aquibmoin's picture
Update app.py
01437c3 verified
raw
history blame
2.65 kB
import gradio as gr
import fitz # PyMuPDF for extracting text from PDFs
from transformers import AutoTokenizer, AutoModel
import torch
from sklearn.metrics.pairwise import cosine_similarity
# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
# Function to extract text from a PDF
def extract_text_from_pdf(pdf_file):
text = ""
with fitz.open(pdf_file) as doc:
for page in doc:
text += page.get_text() # Extract text from each page
return text
# Function to generate embeddings from the text using the NASA Bi-Encoder
def generate_embedding(text):
# Tokenize the text and create input tensors
inputs = bi_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
# Use torch.no_grad() to disable gradient calculation during inference
with torch.no_grad():
# Pass inputs to the model to generate embeddings
outputs = bi_model(**inputs)
# Mean pooling to get the final embedding for the text
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
return embedding
# Function to compute the cosine similarity between two embeddings
def compute_cosine_similarity(embedding1, embedding2):
# Reshape the embeddings and calculate cosine similarity
embedding1 = embedding1.reshape(1, -1)
embedding2 = embedding2.reshape(1, -1)
return cosine_similarity(embedding1, embedding2)[0][0]
# Function to handle the full workflow: extract text, generate embeddings, and compute similarity
def compare_pdfs(pdf1, pdf2):
# Extract text from both PDFs
text1 = extract_text_from_pdf(pdf1)
text2 = extract_text_from_pdf(pdf2)
# Generate embeddings for both texts using the NASA Bi-Encoder
embedding1 = generate_embedding(text1)
embedding2 = generate_embedding(text2)
# Compute cosine similarity between the two embeddings
similarity_score = compute_cosine_similarity(embedding1, embedding2)
# Return the similarity score
return f"The cosine similarity between the two PDF documents is: {similarity_score:.4f}"
# Gradio interface: accept two PDF files and output cosine similarity score
inputs = [gr.File(label="Upload Human SCDD"), gr.File(label="Upload AI SCDD")]
outputs = gr.Textbox(label="Cosine Similarity Score")
# Set up the Gradio interface
gr.Interface(fn=compare_pdfs, inputs=inputs, outputs=outputs, title="AI-Human SCDD Similarity Checker with NASA Bi-Encoder").launch()