|
import gradio as gr |
|
import requests |
|
import os |
|
import re |
|
|
|
API_TOKEN = os.getenv('API_TOKEN') |
|
API_URL = "https://api-inference.huggingface.co/models/nasa-impact/nasa-smd-ibm-st-v2" |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
|
|
def query_similarity(source_sentence, sentences): |
|
payload = { |
|
"inputs": { |
|
"source_sentence": source_sentence, |
|
"sentences": sentences |
|
} |
|
} |
|
response = requests.post(API_URL, headers=headers, json=payload) |
|
return response.json() |
|
|
|
def format_output(response): |
|
results = sorted(response, key=lambda x: x['score'], reverse=True) |
|
formatted_results = [] |
|
for item in results: |
|
formatted_results.append(f"Sentence: {item['sentence']}, Score: {item['score']:.4f}") |
|
return "\n".join(formatted_results) |
|
|
|
def split_into_chunks(text, chunk_size=100): |
|
sentences = re.split(r'(?<=[.!?]) +', text) |
|
chunks = [] |
|
current_chunk = [] |
|
current_length = 0 |
|
|
|
for sentence in sentences: |
|
sentence_length = len(sentence.split()) |
|
if current_length + sentence_length > chunk_size: |
|
chunks.append(" ".join(current_chunk)) |
|
current_chunk = [sentence] |
|
current_length = sentence_length |
|
else: |
|
current_chunk.append(sentence) |
|
current_length += sentence_length |
|
|
|
if current_chunk: |
|
chunks.append(" ".join(current_chunk)) |
|
|
|
return chunks |
|
|
|
def semantic_search(query, document): |
|
chunks = split_into_chunks(document) |
|
response = query_similarity(query, chunks) |
|
return format_output(response) |
|
|
|
def read_file(file): |
|
text = file.read().decode('utf-8') |
|
return text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=semantic_search, |
|
inputs=[ |
|
gr.Textbox(lines=2, placeholder="Enter your query here..."), |
|
gr.File(label="Upload a .txt file") |
|
], |
|
outputs="text", |
|
title="Document Semantic Search", |
|
description="Input a query and upload a document (.txt) to find the most semantically similar paragraphs or sentences.", |
|
examples=[ |
|
["Enter a sample query here...", None] |
|
] |
|
) |
|
|
|
iface.launch() |
|
|
|
|