import streamlit as st import replicate import os # App title st.set_page_config(page_title="🦙💬 Meta Llama Inference") # Replicate Credentials with st.sidebar: st.title('🦙💬 Meta Llama Inference') if 'REPLICATE_API_TOKEN' in st.secrets: st.success('API key already provided!', icon='✅') replicate_api = st.secrets['REPLICATE_API_TOKEN'] else: replicate_api = st.text_input('Enter Replicate API token:', type='password') if not (replicate_api.startswith('r8_') and len(replicate_api)==40): st.warning('Please enter your credentials!', icon='⚠️') else: st.success('Proceed to entering your prompt message!', icon='👉') os.environ['REPLICATE_API_TOKEN'] = replicate_api st.subheader('Models and parameters') selected_model = st.sidebar.selectbox('Choose a Meta Llama model', ['Llama2-7B', 'Llama2-13B', 'Llama3-8B-Instruct', 'Llama3-70B-instruct'], key='selected_model') if selected_model == 'Llama2-7B': llm = 'meta/llama-2-7b-chat' elif selected_model == 'Llama2-13B': llm = 'meta/llama-2-13b-chat' elif selected_model == 'Llama3-8B-Instruct': llm = 'meta/meta-llama-3-8b-instruct' elif selected_model == 'Llama3-70B-Instruct': llm = 'meta/meta-llama-3-70b-instruct' temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=1.0, value=0.1, step=0.01) top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01) max_length = st.sidebar.slider('max_length', min_value=32, max_value=1000, value=400, step=8) #st.markdown('📖 Learn how to build this app in this [blog](https://blog.streamlit.io/how-to-build-a-llama-2-chatbot/)!') # Store LLM generated responses if "messages" not in st.session_state.keys(): st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] # Display or clear chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) def clear_chat_history(): st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] st.sidebar.button('Clear Chat History', on_click=clear_chat_history) # Function for generating LLaMA2 response. Refactored from https://github.com/a16z-infra/llama2-chatbot def generate_llama2_response(prompt_input): string_dialogue = "You are a helpful assistant. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'." for dict_message in st.session_state.messages: if dict_message["role"] == "user": string_dialogue += "User: " + dict_message["content"] + "\n\n" else: string_dialogue += "Assistant: " + dict_message["content"] + "\n\n" output = replicate.run(llm, input={"prompt": f"{string_dialogue} {prompt_input} Assistant: ", "temperature":temperature, "top_p":top_p, "max_length":max_length, "repetition_penalty":1}) return output # User-provided prompt if prompt := st.chat_input(disabled=not replicate_api): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Generate a new response if last message is not from assistant if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = generate_llama2_response(prompt) placeholder = st.empty() full_response = '' for item in response: full_response += item placeholder.markdown(full_response) placeholder.markdown(full_response) message = {"role": "assistant", "content": full_response} st.session_state.messages.append(message)