import spaces import os import gradio as gr from pdf2image import convert_from_path from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch import torchvision import subprocess def install_poppler(): try: subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except FileNotFoundError: print("Poppler not found. Installing...") subprocess.run("apt-get update", shell=True) subprocess.run("apt-get install -y poppler-utils", shell=True) install_poppler() subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) RAG = RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2") model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval() processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) @spaces.GPU() def process_pdf_and_query(pdf_file, user_query): images = convert_from_path(pdf_file.name) num_images = len(images) RAG.index( input_path=pdf_file.name, index_name="image_index", store_collection_with_index=False, overwrite=True ) results = RAG.search(user_query, k=1) if not results: return "No results found.", num_images image_index = results[0]["page_num"] - 1 messages = [ { "role": "user", "content": [ { "type": "image", "image": images[image_index], }, {"type": "text", "text": user_query}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=50) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0], num_images css = """ body { font-family: Arial, sans-serif; background-color: #2b2b2b; color: #e0e0e0; } .container { max-width: 800px; margin: 0 auto; padding: 20px; background-color: #363636; border-radius: 10px; box-shadow: 0 0 10px rgba(0,0,0,0.3); } .title { font-size: 24px; font-weight: bold; text-align: center; margin-bottom: 20px; color: #50fa7b; } .submit-btn { background-color: #50fa7b; color: #282a36; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; font-size: 16px; font-weight: bold; } .submit-btn:hover { background-color: #45c967; } .duplicate-button { background-color: #8be9fd; color: #282a36; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; font-size: 16px; font-weight: bold; margin-top: 20px; } .duplicate-button:hover { background-color: #79c7d8; } a { color: #8be9fd; text-decoration: none; } a:hover { text-decoration: underline; } """ explanation = """
Multimodal RAG (Retrieval-Augmented Generation) combines text and image processing to provide more context-aware responses. This demo uses:
This combination allows for more accurate and context-aware responses to queries about uploaded PDFs.