Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,990 Bytes
d3af075 3c17b0f bc9bf80 3c17b0f c305876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import spaces
import os
import time
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig, AutoProcessor
import gradio as gr
from threading import Thread
from PIL import Image
import subprocess
# Install flash-attn if not already installed
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Model and tokenizer for the chatbot
MODEL_ID1 = "microsoft/Phi-3.5-mini-instruct"
MODEL_LIST1 = ["microsoft/Phi-3.5-mini-instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage / But you need GPU :)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID1)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID1,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
# Chatbot tab function
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
eos_token_id=[128001,128008,128009],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
# Vision model setup
models = {
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
}
processors = {
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
}
user_prompt = '\n'
assistant_prompt = '\n'
prompt_suffix = "\n"
# Vision model tab function
@spaces.GPU()
def stream_vision(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
model = models[model_id]
processor = processors[model_id]
# Prepare the image list and corresponding tags
images = [Image.fromarray(image).convert("RGB")]
placeholder = "<|image_1|>\n" # Using the image tag as per the example
# Construct the prompt with the image tag and the user's text input
if text_input:
prompt_content = placeholder + text_input
else:
prompt_content = placeholder
messages = [
{"role": "user", "content": prompt_content},
]
# Apply the chat template to the messages
prompt = processor.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Process the inputs with the processor
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0")
# Generation parameters
generation_args = {
"max_new_tokens": 1000,
"temperature": 0.0,
"do_sample": False,
}
# Generate the response
generate_ids = model.generate(
**inputs,
eos_token_id=processor.tokenizer.eos_token_id,
**generation_args
)
# Remove input tokens from the generated response
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
# Decode the generated output
response = processor.batch_decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return response
# CSS for the interface
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
PLACEHOLDER = """
<center>
<p>Hi! I'm your assistant. Feel free to ask your questions</p>
</center>
"""
TITLE = "<h1><center>Phi-3.5 Chatbot & Phi-3.5 Vision</center></h1>"
EXPLANATION = """
<div style="text-align: center; margin-top: 20px;">
<p>This app supports both the microsoft/Phi-3.5-mini-instruct model for chat bot and the microsoft/Phi-3.5-vision-instruct model for multimodal model.</p>
<p>Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model built upon datasets which include - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data both on text and vision. The model belongs to the Phi-3 model family, and the multimodal version comes with 128K context length (in tokens) it can support. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures.</p>
<p>Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.</p>
</div>
"""
footer = """
<div style="text-align: center; margin-top: 20px;">
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
<a href="https://huggingface.co/microsoft/Phi-3.5-mini-instruct" target="_blank">microsoft/Phi-3.5-mini-instruct</a> |
<a href="https://huggingface.co/microsoft/Phi-3.5-vision-instruct" target="_blank">microsoft/Phi-3.5-vision-instruct</a>
<br>
Made with π by Pejman Ebrahimi
</div>
"""
# Gradio app with two tabs
with gr.Blocks(css=CSS, theme="small_and_pretty") as demo:
gr.HTML(TITLE)
gr.HTML(EXPLANATION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are a helpful assistant",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["How to make a self-driving car?"],
["Give me a creative idea to establish a startup"],
["How can I improve my programming skills?"],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
with gr.Tab("Vision"):
with gr.Row():
input_img = gr.Image(label="Input Picture")
with gr.Row():
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
with gr.Row():
text_input = gr.Textbox(label="Question")
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Row():
output_text = gr.Textbox(label="Output Text")
submit_btn.click(stream_vision, [input_img, text_input, model_selector], [output_text])
gr.HTML(footer)
# Launch the combined app
demo.launch(debug=True) |