File size: 7,078 Bytes
7381f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=65)
def infer(

    prompt,

    negative_prompt="",

    seed=42,

    randomize_seed=False,

    width=1024,

    height=1024,

    guidance_scale=4.5,

    num_inference_steps=40,

    progress=gr.Progress(track_tqdm=True),

):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

# Enhanced examples with creative prompts
examples = [
    "A capybara wearing a suit holding a sign that reads Hello World",
    "A steampunk-style flying ship made of brass and wood, floating through cotton candy clouds",
    "A magical library where books are flying and glowing, with a wise owl librarian",
    "A cyberpunk street food vendor selling neon-colored dumplings in the rain",
    "A group of penguins having a formal tea party in the Antarctic",
    "A treehouse city at sunset with bioluminescent plants and floating lanterns"
]

# Custom CSS with modern styling
css = """

:root {

    --primary-color: #7B2CBF;

    --secondary-color: #9D4EDD;

    --background-color: #10002B;

    --text-color: #E0AAFF;

    --card-bg: #240046;

}



#col-container {

    max-width: 850px !important;

    margin: 0 auto;

    padding: 20px;

    background: var(--background-color);

    border-radius: 15px;

    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

}



.main-title {

    color: var(--text-color) !important;

    text-align: center;

    font-size: 2.5em !important;

    margin-bottom: 1em !important;

    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);

}



.gradio-container {

    background: var(--background-color) !important;

    color: var(--text-color) !important;

}



.gr-button {

    background: var(--primary-color) !important;

    border: none !important;

    color: white !important;

    transition: transform 0.2s !important;

}



.gr-button:hover {

    transform: translateY(-2px) !important;

    background: var(--secondary-color) !important;

}



.gr-input, .gr-box {

    background: var(--card-bg) !important;

    border: 1px solid var(--primary-color) !important;

    color: var(--text-color) !important;

}



.footer-custom a {

    color: var(--text-color);

    text-decoration: none;

    margin: 0 10px;

    transition: color 0.3s;

}



.footer-custom a:hover {

    color: var(--secondary-color);

    text-decoration: underline;

}

"""

# Footer HTML
footer = """

<div class="footer-custom" style="text-align: center; margin-top: 20px; color: #f8f8f2;">

    <a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |

    <a href="https://github.com/arad1367" target="_blank">GitHub</a> |

    <a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |

    <a href="https://huggingface.co/stabilityai/stable-diffusion-3.5-large" target="_blank">stable-diffusion-3.5-large model</a> |

    <a href="https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large-turbo" target="_blank">stable-diffusion-3.5-large-turbo</a> |

    <a href="https://stability.ai/license" target="_blank">Stability.ai licence</a>

    <br>

    <p style="margin-top: 10px;">Made with πŸ’– by Pejman Ebrahimi</p>

</div>

"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(
            '<h1 class="main-title">Stable Diffusion 3.5 Large (8B)</h1>'
            '<div style="text-align: center; margin-bottom: 20px;">'
            '<a href="https://stability.ai" target="_blank" style="color: #E0AAFF;">Visit Stability.ai</a>'
            '</div>'
        )
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Generate", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=4.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=40,
                )

        gr.Examples(
            examples=examples,
            inputs=[prompt],
            outputs=[result, seed],
            fn=infer,
            cache_examples=True,
            cache_mode="lazy"
        )
        
        gr.HTML(footer)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()