Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,078 Bytes
7381f90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=4.5,
num_inference_steps=40,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
# Enhanced examples with creative prompts
examples = [
"A capybara wearing a suit holding a sign that reads Hello World",
"A steampunk-style flying ship made of brass and wood, floating through cotton candy clouds",
"A magical library where books are flying and glowing, with a wise owl librarian",
"A cyberpunk street food vendor selling neon-colored dumplings in the rain",
"A group of penguins having a formal tea party in the Antarctic",
"A treehouse city at sunset with bioluminescent plants and floating lanterns"
]
# Custom CSS with modern styling
css = """
:root {
--primary-color: #7B2CBF;
--secondary-color: #9D4EDD;
--background-color: #10002B;
--text-color: #E0AAFF;
--card-bg: #240046;
}
#col-container {
max-width: 850px !important;
margin: 0 auto;
padding: 20px;
background: var(--background-color);
border-radius: 15px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-title {
color: var(--text-color) !important;
text-align: center;
font-size: 2.5em !important;
margin-bottom: 1em !important;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.gradio-container {
background: var(--background-color) !important;
color: var(--text-color) !important;
}
.gr-button {
background: var(--primary-color) !important;
border: none !important;
color: white !important;
transition: transform 0.2s !important;
}
.gr-button:hover {
transform: translateY(-2px) !important;
background: var(--secondary-color) !important;
}
.gr-input, .gr-box {
background: var(--card-bg) !important;
border: 1px solid var(--primary-color) !important;
color: var(--text-color) !important;
}
.footer-custom a {
color: var(--text-color);
text-decoration: none;
margin: 0 10px;
transition: color 0.3s;
}
.footer-custom a:hover {
color: var(--secondary-color);
text-decoration: underline;
}
"""
# Footer HTML
footer = """
<div class="footer-custom" style="text-align: center; margin-top: 20px; color: #f8f8f2;">
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
<a href="https://huggingface.co/stabilityai/stable-diffusion-3.5-large" target="_blank">stable-diffusion-3.5-large model</a> |
<a href="https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large-turbo" target="_blank">stable-diffusion-3.5-large-turbo</a> |
<a href="https://stability.ai/license" target="_blank">Stability.ai licence</a>
<br>
<p style="margin-top: 10px;">Made with π by Pejman Ebrahimi</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(
'<h1 class="main-title">Stable Diffusion 3.5 Large (8B)</h1>'
'<div style="text-align: center; margin-bottom: 20px;">'
'<a href="https://stability.ai" target="_blank" style="color: #E0AAFF;">Visit Stability.ai</a>'
'</div>'
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
fn=infer,
cache_examples=True,
cache_mode="lazy"
)
gr.HTML(footer)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |