import spaces import gradio as gr from cartesia_pytorch import ReneLMHeadModel from transformers import AutoTokenizer # Load model and tokenizer model = ReneLMHeadModel.from_pretrained("cartesia-ai/Rene-v0.1-1.3b-pytorch").half().cuda() tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B-hf") # Define the function to generate text @spaces.GPU(duration=120) def generate_text(input_text): inputs = tokenizer([input_text], return_tensors="pt") outputs = model.generate(inputs.input_ids.cuda(), max_length=50, top_k=100, top_p=0.99) out_message = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] return out_message # Create Gradio interface interface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="ReneLM Text Generator", description="Generate text using ReneLMHeadModel from a prompt." ) # Launch the Gradio app interface.launch()