Spaces:
Sleeping
Sleeping
import transformers | |
import gradio as gr | |
import librosa | |
import torch | |
import spaces | |
import numpy as np | |
def transcribe_and_respond(audio_file): | |
try: | |
pipe = transformers.pipeline( | |
model='sarvamai/shuka_v1', | |
trust_remote_code=True, | |
device=0, | |
torch_dtype=torch.bfloat16 | |
) | |
# Load the audio file | |
audio, sr = librosa.load(audio_file, sr=16000) | |
# Print audio properties for debugging | |
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}") | |
turns = [ | |
{'role': 'system', 'content': 'Respond naturally and informatively.'}, | |
{'role': 'user', 'content': '<|audio|>'} | |
] | |
# Debug: Print the initial turns | |
print(f"Initial turns: {turns}") | |
# Call the model with the audio and prompt | |
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512) | |
# Debug: Print the final output from the model | |
print(f"Model output: {output}") | |
return output | |
except Exception as e: | |
return f"Error: {str(e)}" | |
iface = gr.Interface( | |
fn=transcribe_and_respond, | |
inputs=gr.Audio(sources="microphone", type="filepath"), | |
outputs="text", | |
title="Live Transcription and Response", | |
description="Speak into your microphone, and the model will respond naturally and informatively.", | |
live=True | |
) | |
if __name__ == "__main__": | |
iface.launch() | |