Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
class TPS_SpatialTransformerNetwork(nn.Module): | |
""" Rectification Network of RARE, namely TPS based STN """ | |
def __init__(self, F, I_size, I_r_size, I_channel_num=1): | |
""" Based on RARE TPS | |
input: | |
batch_I: Batch Input Image [batch_size x I_channel_num x I_height x I_width] | |
I_size : (height, width) of the input image I | |
I_r_size : (height, width) of the rectified image I_r | |
I_channel_num : the number of channels of the input image I | |
output: | |
batch_I_r: rectified image [batch_size x I_channel_num x I_r_height x I_r_width] | |
""" | |
super(TPS_SpatialTransformerNetwork, self).__init__() | |
self.F = F | |
self.I_size = I_size | |
self.I_r_size = I_r_size # = (I_r_height, I_r_width) | |
self.I_channel_num = I_channel_num | |
self.LocalizationNetwork = LocalizationNetwork(self.F, self.I_channel_num) | |
self.GridGenerator = GridGenerator(self.F, self.I_r_size) | |
def forward(self, batch_I): | |
batch_C_prime = self.LocalizationNetwork(batch_I) # batch_size x K x 2 | |
build_P_prime = self.GridGenerator.build_P_prime(batch_C_prime) # batch_size x n (= I_r_width x I_r_height) x 2 | |
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.size(0), self.I_r_size[0], self.I_r_size[1], 2]) | |
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border') | |
return batch_I_r | |
class LocalizationNetwork(nn.Module): | |
""" Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """ | |
def __init__(self, F, I_channel_num): | |
super(LocalizationNetwork, self).__init__() | |
self.F = F | |
self.I_channel_num = I_channel_num | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1, | |
bias=False), nn.BatchNorm2d(64), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # batch_size x 64 x I_height/2 x I_width/2 | |
nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # batch_size x 128 x I_height/4 x I_width/4 | |
nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # batch_size x 256 x I_height/8 x I_width/8 | |
nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True), | |
nn.AdaptiveAvgPool2d(1) # batch_size x 512 | |
) | |
self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True)) | |
self.localization_fc2 = nn.Linear(256, self.F * 2) | |
# Init fc2 in LocalizationNetwork | |
self.localization_fc2.weight.data.fill_(0) | |
""" see RARE paper Fig. 6 (a) """ | |
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) | |
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2)) | |
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2)) | |
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) | |
self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1) | |
def forward(self, batch_I): | |
""" | |
input: batch_I : Batch Input Image [batch_size x I_channel_num x I_height x I_width] | |
output: batch_C_prime : Predicted coordinates of fiducial points for input batch [batch_size x F x 2] | |
""" | |
batch_size = batch_I.size(0) | |
features = self.conv(batch_I).view(batch_size, -1) | |
batch_C_prime = self.localization_fc2(self.localization_fc1(features)).view(batch_size, self.F, 2) | |
return batch_C_prime | |
class GridGenerator(nn.Module): | |
""" Grid Generator of RARE, which produces P_prime by multiplying T with P """ | |
def __init__(self, F, I_r_size): | |
""" Generate P_hat and inv_delta_C for later """ | |
super(GridGenerator, self).__init__() | |
self.eps = 1e-6 | |
self.I_r_height, self.I_r_width = I_r_size | |
self.F = F | |
self.C = self._build_C(self.F) # F x 2 | |
self.P = self._build_P(self.I_r_width, self.I_r_height) | |
## for multi-gpu, you need register buffer | |
self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.F, self.C)).float()) # F+3 x F+3 | |
self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float()) # n x F+3 | |
## for fine-tuning with different image width, you may use below instead of self.register_buffer | |
# self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.F, self.C)).float().cuda() # F+3 x F+3 | |
# self.P_hat = torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float().cuda() # n x F+3 | |
def _build_C(self, F): | |
""" Return coordinates of fiducial points in I_r; C """ | |
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) | |
ctrl_pts_y_top = -1 * np.ones(int(F / 2)) | |
ctrl_pts_y_bottom = np.ones(int(F / 2)) | |
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) | |
return C # F x 2 | |
def _build_inv_delta_C(self, F, C): | |
""" Return inv_delta_C which is needed to calculate T """ | |
hat_C = np.zeros((F, F), dtype=float) # F x F | |
for i in range(0, F): | |
for j in range(i, F): | |
r = np.linalg.norm(C[i] - C[j]) | |
hat_C[i, j] = r | |
hat_C[j, i] = r | |
np.fill_diagonal(hat_C, 1) | |
hat_C = (hat_C ** 2) * np.log(hat_C) | |
# print(C.shape, hat_C.shape) | |
delta_C = np.concatenate( # F+3 x F+3 | |
[ | |
np.concatenate([np.ones((F, 1)), C, hat_C], axis=1), # F x F+3 | |
np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1), # 2 x F+3 | |
np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1) # 1 x F+3 | |
], | |
axis=0 | |
) | |
inv_delta_C = np.linalg.inv(delta_C) | |
return inv_delta_C # F+3 x F+3 | |
def _build_P(self, I_r_width, I_r_height): | |
I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width # self.I_r_width | |
I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height # self.I_r_height | |
P = np.stack( # self.I_r_width x self.I_r_height x 2 | |
np.meshgrid(I_r_grid_x, I_r_grid_y), | |
axis=2 | |
) | |
return P.reshape([-1, 2]) # n (= self.I_r_width x self.I_r_height) x 2 | |
def _build_P_hat(self, F, C, P): | |
n = P.shape[0] # n (= self.I_r_width x self.I_r_height) | |
P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1)) # n x 2 -> n x 1 x 2 -> n x F x 2 | |
C_tile = np.expand_dims(C, axis=0) # 1 x F x 2 | |
P_diff = P_tile - C_tile # n x F x 2 | |
rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False) # n x F | |
rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps)) # n x F | |
P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1) | |
return P_hat # n x F+3 | |
def build_P_prime(self, batch_C_prime): | |
""" Generate Grid from batch_C_prime [batch_size x F x 2] """ | |
batch_size = batch_C_prime.size(0) | |
batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1) | |
batch_P_hat = self.P_hat.repeat(batch_size, 1, 1) | |
batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros( | |
batch_size, 3, 2).float().to(device)), dim=1) # batch_size x F+3 x 2 | |
batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros) # batch_size x F+3 x 2 | |
batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2 | |
return batch_P_prime # batch_size x n x 2 | |
class VGG_FeatureExtractor(nn.Module): | |
""" FeatureExtractor of CRNN (https://arxiv.org/pdf/1507.05717.pdf) """ | |
def __init__(self, input_channel, output_channel=512): | |
super(VGG_FeatureExtractor, self).__init__() | |
self.output_channel = [int(output_channel / 8), int(output_channel / 4), | |
int(output_channel / 2), output_channel] # [64, 128, 256, 512] | |
self.ConvNet = nn.Sequential( | |
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # 64x16x50 | |
nn.Conv2d(self.output_channel[0], self.output_channel[1], 3, 1, 1), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # 128x8x25 | |
nn.Conv2d(self.output_channel[1], self.output_channel[2], 3, 1, 1), nn.ReLU(True), # 256x8x25 | |
nn.Conv2d(self.output_channel[2], self.output_channel[2], 3, 1, 1), nn.ReLU(True), | |
nn.MaxPool2d((2, 1), (2, 1)), # 256x4x25 | |
nn.Conv2d(self.output_channel[2], self.output_channel[3], 3, 1, 1, bias=False), | |
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), # 512x4x25 | |
nn.Conv2d(self.output_channel[3], self.output_channel[3], 3, 1, 1, bias=False), | |
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), | |
nn.MaxPool2d((2, 1), (2, 1)), # 512x2x25 | |
nn.Conv2d(self.output_channel[3], self.output_channel[3], 2, 1, 0), nn.ReLU(True)) # 512x1x24 | |
def forward(self, input): | |
return self.ConvNet(input) | |
class RCNN_FeatureExtractor(nn.Module): | |
""" FeatureExtractor of GRCNN (https://papers.nips.cc/paper/6637-gated-recurrent-convolution-neural-network-for-ocr.pdf) """ | |
def __init__(self, input_channel, output_channel=512): | |
super(RCNN_FeatureExtractor, self).__init__() | |
self.output_channel = [int(output_channel / 8), int(output_channel / 4), | |
int(output_channel / 2), output_channel] # [64, 128, 256, 512] | |
self.ConvNet = nn.Sequential( | |
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # 64 x 16 x 50 | |
GRCL(self.output_channel[0], self.output_channel[0], num_iteration=5, kernel_size=3, pad=1), | |
nn.MaxPool2d(2, 2), # 64 x 8 x 25 | |
GRCL(self.output_channel[0], self.output_channel[1], num_iteration=5, kernel_size=3, pad=1), | |
nn.MaxPool2d(2, (2, 1), (0, 1)), # 128 x 4 x 26 | |
GRCL(self.output_channel[1], self.output_channel[2], num_iteration=5, kernel_size=3, pad=1), | |
nn.MaxPool2d(2, (2, 1), (0, 1)), # 256 x 2 x 27 | |
nn.Conv2d(self.output_channel[2], self.output_channel[3], 2, 1, 0, bias=False), | |
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True)) # 512 x 1 x 26 | |
def forward(self, input): | |
return self.ConvNet(input) | |
class ResNet_FeatureExtractor(nn.Module): | |
""" FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf) """ | |
def __init__(self, input_channel, output_channel=512): | |
super(ResNet_FeatureExtractor, self).__init__() | |
self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [1, 2, 5, 3]) | |
def forward(self, input): | |
return self.ConvNet(input) | |
# For Gated RCNN | |
class GRCL(nn.Module): | |
def __init__(self, input_channel, output_channel, num_iteration, kernel_size, pad): | |
super(GRCL, self).__init__() | |
self.wgf_u = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False) | |
self.wgr_x = nn.Conv2d(output_channel, output_channel, 1, 1, 0, bias=False) | |
self.wf_u = nn.Conv2d(input_channel, output_channel, kernel_size, 1, pad, bias=False) | |
self.wr_x = nn.Conv2d(output_channel, output_channel, kernel_size, 1, pad, bias=False) | |
self.BN_x_init = nn.BatchNorm2d(output_channel) | |
self.num_iteration = num_iteration | |
self.GRCL = [GRCL_unit(output_channel) for _ in range(num_iteration)] | |
self.GRCL = nn.Sequential(*self.GRCL) | |
def forward(self, input): | |
""" The input of GRCL is consistant over time t, which is denoted by u(0) | |
thus wgf_u / wf_u is also consistant over time t. | |
""" | |
wgf_u = self.wgf_u(input) | |
wf_u = self.wf_u(input) | |
x = F.relu(self.BN_x_init(wf_u)) | |
for i in range(self.num_iteration): | |
x = self.GRCL[i](wgf_u, self.wgr_x(x), wf_u, self.wr_x(x)) | |
return x | |
class GRCL_unit(nn.Module): | |
def __init__(self, output_channel): | |
super(GRCL_unit, self).__init__() | |
self.BN_gfu = nn.BatchNorm2d(output_channel) | |
self.BN_grx = nn.BatchNorm2d(output_channel) | |
self.BN_fu = nn.BatchNorm2d(output_channel) | |
self.BN_rx = nn.BatchNorm2d(output_channel) | |
self.BN_Gx = nn.BatchNorm2d(output_channel) | |
def forward(self, wgf_u, wgr_x, wf_u, wr_x): | |
G_first_term = self.BN_gfu(wgf_u) | |
G_second_term = self.BN_grx(wgr_x) | |
G = F.sigmoid(G_first_term + G_second_term) | |
x_first_term = self.BN_fu(wf_u) | |
x_second_term = self.BN_Gx(self.BN_rx(wr_x) * G) | |
x = F.relu(x_first_term + x_second_term) | |
return x | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = self._conv3x3(inplanes, planes) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = self._conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def _conv3x3(self, in_planes, out_planes, stride=1): | |
"3x3 convolution with padding" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, input_channel, output_channel, block, layers): | |
super(ResNet, self).__init__() | |
self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel] | |
self.inplanes = int(output_channel / 8) | |
self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16), | |
kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16)) | |
self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes, | |
kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn0_2 = nn.BatchNorm2d(self.inplanes) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) | |
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0]) | |
self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[ | |
0], kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0]) | |
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) | |
self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1) | |
self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[ | |
1], kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1]) | |
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1)) | |
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1) | |
self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[ | |
2], kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2]) | |
self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1) | |
self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ | |
3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False) | |
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3]) | |
self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ | |
3], kernel_size=2, stride=1, padding=0, bias=False) | |
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3]) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv0_1(x) | |
x = self.bn0_1(x) | |
x = self.relu(x) | |
x = self.conv0_2(x) | |
x = self.bn0_2(x) | |
x = self.relu(x) | |
x = self.maxpool1(x) | |
x = self.layer1(x) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool2(x) | |
x = self.layer2(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.relu(x) | |
x = self.maxpool3(x) | |
x = self.layer3(x) | |
x = self.conv3(x) | |
x = self.bn3(x) | |
x = self.relu(x) | |
x = self.layer4(x) | |
x = self.conv4_1(x) | |
x = self.bn4_1(x) | |
x = self.relu(x) | |
x = self.conv4_2(x) | |
x = self.bn4_2(x) | |
x = self.relu(x) | |
return x | |
class BidirectionalLSTM(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size): | |
super(BidirectionalLSTM, self).__init__() | |
self.rnn = nn.LSTM(input_size, hidden_size, bidirectional=True, batch_first=True) | |
self.linear = nn.Linear(hidden_size * 2, output_size) | |
def forward(self, input): | |
""" | |
input : visual feature [batch_size x T x input_size] | |
output : contextual feature [batch_size x T x output_size] | |
""" | |
try: | |
self.rnn.flatten_parameters() | |
except: | |
pass | |
recurrent, _ = self.rnn(input) # batch_size x T x input_size -> batch_size x T x (2*hidden_size) | |
output = self.linear(recurrent) # batch_size x T x output_size | |
return output | |
class Attention(nn.Module): | |
def __init__(self, input_size, hidden_size, num_classes): | |
super(Attention, self).__init__() | |
self.attention_cell = AttentionCell(input_size, hidden_size, num_classes) | |
self.hidden_size = hidden_size | |
self.num_classes = num_classes | |
self.generator = nn.Linear(hidden_size, num_classes) | |
def _char_to_onehot(self, input_char, onehot_dim=38): | |
input_char = input_char.unsqueeze(1) | |
batch_size = input_char.size(0) | |
one_hot = torch.FloatTensor(batch_size, onehot_dim).zero_().to(device) | |
one_hot = one_hot.scatter_(1, input_char, 1) | |
return one_hot | |
def forward(self, batch_H, text, is_train=True, batch_max_length=25): | |
""" | |
input: | |
batch_H : contextual_feature H = hidden state of encoder. [batch_size x num_steps x num_classes] | |
text : the text-index of each image. [batch_size x (max_length+1)]. +1 for [GO] token. text[:, 0] = [GO]. | |
output: probability distribution at each step [batch_size x num_steps x num_classes] | |
""" | |
batch_size = batch_H.size(0) | |
num_steps = batch_max_length + 1 # +1 for [s] at end of sentence. | |
output_hiddens = torch.FloatTensor(batch_size, num_steps, self.hidden_size).fill_(0).to(device) | |
hidden = (torch.FloatTensor(batch_size, self.hidden_size).fill_(0).to(device), | |
torch.FloatTensor(batch_size, self.hidden_size).fill_(0).to(device)) | |
if is_train: | |
for i in range(num_steps): | |
# one-hot vectors for a i-th char. in a batch | |
char_onehots = self._char_to_onehot(text[:, i], onehot_dim=self.num_classes) | |
# hidden : decoder's hidden s_{t-1}, batch_H : encoder's hidden H, char_onehots : one-hot(y_{t-1}) | |
hidden, alpha = self.attention_cell(hidden, batch_H, char_onehots) | |
output_hiddens[:, i, :] = hidden[0] # LSTM hidden index (0: hidden, 1: Cell) | |
probs = self.generator(output_hiddens) | |
else: | |
targets = torch.LongTensor(batch_size).fill_(0).to(device) # [GO] token | |
probs = torch.FloatTensor(batch_size, num_steps, self.num_classes).fill_(0).to(device) | |
for i in range(num_steps): | |
char_onehots = self._char_to_onehot(targets, onehot_dim=self.num_classes) | |
hidden, alpha = self.attention_cell(hidden, batch_H, char_onehots) | |
probs_step = self.generator(hidden[0]) | |
probs[:, i, :] = probs_step | |
_, next_input = probs_step.max(1) | |
targets = next_input | |
return probs # batch_size x num_steps x num_classes | |
class AttentionCell(nn.Module): | |
def __init__(self, input_size, hidden_size, num_embeddings): | |
super(AttentionCell, self).__init__() | |
self.i2h = nn.Linear(input_size, hidden_size, bias=False) | |
self.h2h = nn.Linear(hidden_size, hidden_size) # either i2i or h2h should have bias | |
self.score = nn.Linear(hidden_size, 1, bias=False) | |
self.rnn = nn.LSTMCell(input_size + num_embeddings, hidden_size) | |
self.hidden_size = hidden_size | |
def forward(self, prev_hidden, batch_H, char_onehots): | |
# [batch_size x num_encoder_step x num_channel] -> [batch_size x num_encoder_step x hidden_size] | |
batch_H_proj = self.i2h(batch_H) | |
prev_hidden_proj = self.h2h(prev_hidden[0]).unsqueeze(1) | |
e = self.score(torch.tanh(batch_H_proj + prev_hidden_proj)) # batch_size x num_encoder_step * 1 | |
alpha = F.softmax(e, dim=1) | |
context = torch.bmm(alpha.permute(0, 2, 1), batch_H).squeeze(1) # batch_size x num_channel | |
concat_context = torch.cat([context, char_onehots], 1) # batch_size x (num_channel + num_embedding) | |
cur_hidden = self.rnn(concat_context, prev_hidden) | |
return cur_hidden, alpha | |
class Model(nn.Module): | |
def __init__(self, input_channel, output_channel, hidden_size, num_class): | |
super(Model, self).__init__() | |
""" FeatureExtraction """ | |
self.FeatureExtraction = VGG_FeatureExtractor(input_channel, output_channel) | |
self.FeatureExtraction_output = output_channel # int(imgH/16-1) * 512 | |
self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1)) # Transform final (imgH/16-1) -> 1 | |
""" Sequence modeling""" | |
self.SequenceModeling = nn.Sequential( | |
BidirectionalLSTM(self.FeatureExtraction_output, hidden_size, hidden_size), | |
BidirectionalLSTM(hidden_size, hidden_size, hidden_size)) | |
self.SequenceModeling_output = hidden_size | |
self.Prediction = nn.Linear(self.SequenceModeling_output, num_class) | |
def forward(self, input, text): | |
""" Feature extraction stage """ | |
visual_feature = self.FeatureExtraction(input) | |
visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) # [b, c, h, w] -> [b, w, c, h] | |
visual_feature = visual_feature.squeeze(3) | |
""" Sequence modeling stage """ | |
contextual_feature = self.SequenceModeling(visual_feature) | |
prediction = self.Prediction(contextual_feature.contiguous()) | |
return prediction | |