BookRecogntionKZ / models /best_norm_ED.py
ardakshalkar's picture
add files
d7deef5
raw
history blame
24.3 kB
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class TPS_SpatialTransformerNetwork(nn.Module):
""" Rectification Network of RARE, namely TPS based STN """
def __init__(self, F, I_size, I_r_size, I_channel_num=1):
""" Based on RARE TPS
input:
batch_I: Batch Input Image [batch_size x I_channel_num x I_height x I_width]
I_size : (height, width) of the input image I
I_r_size : (height, width) of the rectified image I_r
I_channel_num : the number of channels of the input image I
output:
batch_I_r: rectified image [batch_size x I_channel_num x I_r_height x I_r_width]
"""
super(TPS_SpatialTransformerNetwork, self).__init__()
self.F = F
self.I_size = I_size
self.I_r_size = I_r_size # = (I_r_height, I_r_width)
self.I_channel_num = I_channel_num
self.LocalizationNetwork = LocalizationNetwork(self.F, self.I_channel_num)
self.GridGenerator = GridGenerator(self.F, self.I_r_size)
def forward(self, batch_I):
batch_C_prime = self.LocalizationNetwork(batch_I) # batch_size x K x 2
build_P_prime = self.GridGenerator.build_P_prime(batch_C_prime) # batch_size x n (= I_r_width x I_r_height) x 2
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.size(0), self.I_r_size[0], self.I_r_size[1], 2])
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border')
return batch_I_r
class LocalizationNetwork(nn.Module):
""" Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """
def __init__(self, F, I_channel_num):
super(LocalizationNetwork, self).__init__()
self.F = F
self.I_channel_num = I_channel_num
self.conv = nn.Sequential(
nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1,
bias=False), nn.BatchNorm2d(64), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 64 x I_height/2 x I_width/2
nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 128 x I_height/4 x I_width/4
nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 256 x I_height/8 x I_width/8
nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True),
nn.AdaptiveAvgPool2d(1) # batch_size x 512
)
self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True))
self.localization_fc2 = nn.Linear(256, self.F * 2)
# Init fc2 in LocalizationNetwork
self.localization_fc2.weight.data.fill_(0)
""" see RARE paper Fig. 6 (a) """
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1)
def forward(self, batch_I):
"""
input: batch_I : Batch Input Image [batch_size x I_channel_num x I_height x I_width]
output: batch_C_prime : Predicted coordinates of fiducial points for input batch [batch_size x F x 2]
"""
batch_size = batch_I.size(0)
features = self.conv(batch_I).view(batch_size, -1)
batch_C_prime = self.localization_fc2(self.localization_fc1(features)).view(batch_size, self.F, 2)
return batch_C_prime
class GridGenerator(nn.Module):
""" Grid Generator of RARE, which produces P_prime by multiplying T with P """
def __init__(self, F, I_r_size):
""" Generate P_hat and inv_delta_C for later """
super(GridGenerator, self).__init__()
self.eps = 1e-6
self.I_r_height, self.I_r_width = I_r_size
self.F = F
self.C = self._build_C(self.F) # F x 2
self.P = self._build_P(self.I_r_width, self.I_r_height)
## for multi-gpu, you need register buffer
self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.F, self.C)).float()) # F+3 x F+3
self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float()) # n x F+3
## for fine-tuning with different image width, you may use below instead of self.register_buffer
# self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.F, self.C)).float().cuda() # F+3 x F+3
# self.P_hat = torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float().cuda() # n x F+3
def _build_C(self, F):
""" Return coordinates of fiducial points in I_r; C """
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = -1 * np.ones(int(F / 2))
ctrl_pts_y_bottom = np.ones(int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
return C # F x 2
def _build_inv_delta_C(self, F, C):
""" Return inv_delta_C which is needed to calculate T """
hat_C = np.zeros((F, F), dtype=float) # F x F
for i in range(0, F):
for j in range(i, F):
r = np.linalg.norm(C[i] - C[j])
hat_C[i, j] = r
hat_C[j, i] = r
np.fill_diagonal(hat_C, 1)
hat_C = (hat_C ** 2) * np.log(hat_C)
# print(C.shape, hat_C.shape)
delta_C = np.concatenate( # F+3 x F+3
[
np.concatenate([np.ones((F, 1)), C, hat_C], axis=1), # F x F+3
np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1), # 2 x F+3
np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1) # 1 x F+3
],
axis=0
)
inv_delta_C = np.linalg.inv(delta_C)
return inv_delta_C # F+3 x F+3
def _build_P(self, I_r_width, I_r_height):
I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width # self.I_r_width
I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height # self.I_r_height
P = np.stack( # self.I_r_width x self.I_r_height x 2
np.meshgrid(I_r_grid_x, I_r_grid_y),
axis=2
)
return P.reshape([-1, 2]) # n (= self.I_r_width x self.I_r_height) x 2
def _build_P_hat(self, F, C, P):
n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1)) # n x 2 -> n x 1 x 2 -> n x F x 2
C_tile = np.expand_dims(C, axis=0) # 1 x F x 2
P_diff = P_tile - C_tile # n x F x 2
rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False) # n x F
rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps)) # n x F
P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
return P_hat # n x F+3
def build_P_prime(self, batch_C_prime):
""" Generate Grid from batch_C_prime [batch_size x F x 2] """
batch_size = batch_C_prime.size(0)
batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1)
batch_P_hat = self.P_hat.repeat(batch_size, 1, 1)
batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros(
batch_size, 3, 2).float().to(device)), dim=1) # batch_size x F+3 x 2
batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros) # batch_size x F+3 x 2
batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2
return batch_P_prime # batch_size x n x 2
class VGG_FeatureExtractor(nn.Module):
""" FeatureExtractor of CRNN (https://arxiv.org/pdf/1507.05717.pdf) """
def __init__(self, input_channel, output_channel=512):
super(VGG_FeatureExtractor, self).__init__()
self.output_channel = [int(output_channel / 8), int(output_channel / 4),
int(output_channel / 2), output_channel] # [64, 128, 256, 512]
self.ConvNet = nn.Sequential(
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True),
nn.MaxPool2d(2, 2), # 64x16x50
nn.Conv2d(self.output_channel[0], self.output_channel[1], 3, 1, 1), nn.ReLU(True),
nn.MaxPool2d(2, 2), # 128x8x25
nn.Conv2d(self.output_channel[1], self.output_channel[2], 3, 1, 1), nn.ReLU(True), # 256x8x25
nn.Conv2d(self.output_channel[2], self.output_channel[2], 3, 1, 1), nn.ReLU(True),
nn.MaxPool2d((2, 1), (2, 1)), # 256x4x25
nn.Conv2d(self.output_channel[2], self.output_channel[3], 3, 1, 1, bias=False),
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), # 512x4x25
nn.Conv2d(self.output_channel[3], self.output_channel[3], 3, 1, 1, bias=False),
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True),
nn.MaxPool2d((2, 1), (2, 1)), # 512x2x25
nn.Conv2d(self.output_channel[3], self.output_channel[3], 2, 1, 0), nn.ReLU(True)) # 512x1x24
def forward(self, input):
return self.ConvNet(input)
class RCNN_FeatureExtractor(nn.Module):
""" FeatureExtractor of GRCNN (https://papers.nips.cc/paper/6637-gated-recurrent-convolution-neural-network-for-ocr.pdf) """
def __init__(self, input_channel, output_channel=512):
super(RCNN_FeatureExtractor, self).__init__()
self.output_channel = [int(output_channel / 8), int(output_channel / 4),
int(output_channel / 2), output_channel] # [64, 128, 256, 512]
self.ConvNet = nn.Sequential(
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True),
nn.MaxPool2d(2, 2), # 64 x 16 x 50
GRCL(self.output_channel[0], self.output_channel[0], num_iteration=5, kernel_size=3, pad=1),
nn.MaxPool2d(2, 2), # 64 x 8 x 25
GRCL(self.output_channel[0], self.output_channel[1], num_iteration=5, kernel_size=3, pad=1),
nn.MaxPool2d(2, (2, 1), (0, 1)), # 128 x 4 x 26
GRCL(self.output_channel[1], self.output_channel[2], num_iteration=5, kernel_size=3, pad=1),
nn.MaxPool2d(2, (2, 1), (0, 1)), # 256 x 2 x 27
nn.Conv2d(self.output_channel[2], self.output_channel[3], 2, 1, 0, bias=False),
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True)) # 512 x 1 x 26
def forward(self, input):
return self.ConvNet(input)
class ResNet_FeatureExtractor(nn.Module):
""" FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf) """
def __init__(self, input_channel, output_channel=512):
super(ResNet_FeatureExtractor, self).__init__()
self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [1, 2, 5, 3])
def forward(self, input):
return self.ConvNet(input)
# For Gated RCNN
class GRCL(nn.Module):
def __init__(self, input_channel, output_channel, num_iteration, kernel_size, pad):
super(GRCL, self).__init__()
self.wgf_u = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False)
self.wgr_x = nn.Conv2d(output_channel, output_channel, 1, 1, 0, bias=False)
self.wf_u = nn.Conv2d(input_channel, output_channel, kernel_size, 1, pad, bias=False)
self.wr_x = nn.Conv2d(output_channel, output_channel, kernel_size, 1, pad, bias=False)
self.BN_x_init = nn.BatchNorm2d(output_channel)
self.num_iteration = num_iteration
self.GRCL = [GRCL_unit(output_channel) for _ in range(num_iteration)]
self.GRCL = nn.Sequential(*self.GRCL)
def forward(self, input):
""" The input of GRCL is consistant over time t, which is denoted by u(0)
thus wgf_u / wf_u is also consistant over time t.
"""
wgf_u = self.wgf_u(input)
wf_u = self.wf_u(input)
x = F.relu(self.BN_x_init(wf_u))
for i in range(self.num_iteration):
x = self.GRCL[i](wgf_u, self.wgr_x(x), wf_u, self.wr_x(x))
return x
class GRCL_unit(nn.Module):
def __init__(self, output_channel):
super(GRCL_unit, self).__init__()
self.BN_gfu = nn.BatchNorm2d(output_channel)
self.BN_grx = nn.BatchNorm2d(output_channel)
self.BN_fu = nn.BatchNorm2d(output_channel)
self.BN_rx = nn.BatchNorm2d(output_channel)
self.BN_Gx = nn.BatchNorm2d(output_channel)
def forward(self, wgf_u, wgr_x, wf_u, wr_x):
G_first_term = self.BN_gfu(wgf_u)
G_second_term = self.BN_grx(wgr_x)
G = F.sigmoid(G_first_term + G_second_term)
x_first_term = self.BN_fu(wf_u)
x_second_term = self.BN_Gx(self.BN_rx(wr_x) * G)
x = F.relu(x_first_term + x_second_term)
return x
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = self._conv3x3(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = self._conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def _conv3x3(self, in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, input_channel, output_channel, block, layers):
super(ResNet, self).__init__()
self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel]
self.inplanes = int(output_channel / 8)
self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16),
kernel_size=3, stride=1, padding=1, bias=False)
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16))
self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes,
kernel_size=3, stride=1, padding=1, bias=False)
self.bn0_2 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0])
self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[
0], kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0])
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1)
self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[
1], kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1])
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1))
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1)
self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[
2], kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2])
self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1)
self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False)
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3])
self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
3], kernel_size=2, stride=1, padding=0, bias=False)
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3])
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv0_1(x)
x = self.bn0_1(x)
x = self.relu(x)
x = self.conv0_2(x)
x = self.bn0_2(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool2(x)
x = self.layer2(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.maxpool3(x)
x = self.layer3(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.layer4(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x = self.relu(x)
return x
class BidirectionalLSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(BidirectionalLSTM, self).__init__()
self.rnn = nn.LSTM(input_size, hidden_size, bidirectional=True, batch_first=True)
self.linear = nn.Linear(hidden_size * 2, output_size)
def forward(self, input):
"""
input : visual feature [batch_size x T x input_size]
output : contextual feature [batch_size x T x output_size]
"""
try:
self.rnn.flatten_parameters()
except:
pass
recurrent, _ = self.rnn(input) # batch_size x T x input_size -> batch_size x T x (2*hidden_size)
output = self.linear(recurrent) # batch_size x T x output_size
return output
class Attention(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Attention, self).__init__()
self.attention_cell = AttentionCell(input_size, hidden_size, num_classes)
self.hidden_size = hidden_size
self.num_classes = num_classes
self.generator = nn.Linear(hidden_size, num_classes)
def _char_to_onehot(self, input_char, onehot_dim=38):
input_char = input_char.unsqueeze(1)
batch_size = input_char.size(0)
one_hot = torch.FloatTensor(batch_size, onehot_dim).zero_().to(device)
one_hot = one_hot.scatter_(1, input_char, 1)
return one_hot
def forward(self, batch_H, text, is_train=True, batch_max_length=25):
"""
input:
batch_H : contextual_feature H = hidden state of encoder. [batch_size x num_steps x num_classes]
text : the text-index of each image. [batch_size x (max_length+1)]. +1 for [GO] token. text[:, 0] = [GO].
output: probability distribution at each step [batch_size x num_steps x num_classes]
"""
batch_size = batch_H.size(0)
num_steps = batch_max_length + 1 # +1 for [s] at end of sentence.
output_hiddens = torch.FloatTensor(batch_size, num_steps, self.hidden_size).fill_(0).to(device)
hidden = (torch.FloatTensor(batch_size, self.hidden_size).fill_(0).to(device),
torch.FloatTensor(batch_size, self.hidden_size).fill_(0).to(device))
if is_train:
for i in range(num_steps):
# one-hot vectors for a i-th char. in a batch
char_onehots = self._char_to_onehot(text[:, i], onehot_dim=self.num_classes)
# hidden : decoder's hidden s_{t-1}, batch_H : encoder's hidden H, char_onehots : one-hot(y_{t-1})
hidden, alpha = self.attention_cell(hidden, batch_H, char_onehots)
output_hiddens[:, i, :] = hidden[0] # LSTM hidden index (0: hidden, 1: Cell)
probs = self.generator(output_hiddens)
else:
targets = torch.LongTensor(batch_size).fill_(0).to(device) # [GO] token
probs = torch.FloatTensor(batch_size, num_steps, self.num_classes).fill_(0).to(device)
for i in range(num_steps):
char_onehots = self._char_to_onehot(targets, onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, batch_H, char_onehots)
probs_step = self.generator(hidden[0])
probs[:, i, :] = probs_step
_, next_input = probs_step.max(1)
targets = next_input
return probs # batch_size x num_steps x num_classes
class AttentionCell(nn.Module):
def __init__(self, input_size, hidden_size, num_embeddings):
super(AttentionCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size) # either i2i or h2h should have bias
self.score = nn.Linear(hidden_size, 1, bias=False)
self.rnn = nn.LSTMCell(input_size + num_embeddings, hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
# [batch_size x num_encoder_step x num_channel] -> [batch_size x num_encoder_step x hidden_size]
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = self.h2h(prev_hidden[0]).unsqueeze(1)
e = self.score(torch.tanh(batch_H_proj + prev_hidden_proj)) # batch_size x num_encoder_step * 1
alpha = F.softmax(e, dim=1)
context = torch.bmm(alpha.permute(0, 2, 1), batch_H).squeeze(1) # batch_size x num_channel
concat_context = torch.cat([context, char_onehots], 1) # batch_size x (num_channel + num_embedding)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
class Model(nn.Module):
def __init__(self, input_channel, output_channel, hidden_size, num_class):
super(Model, self).__init__()
""" FeatureExtraction """
self.FeatureExtraction = VGG_FeatureExtractor(input_channel, output_channel)
self.FeatureExtraction_output = output_channel # int(imgH/16-1) * 512
self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1)) # Transform final (imgH/16-1) -> 1
""" Sequence modeling"""
self.SequenceModeling = nn.Sequential(
BidirectionalLSTM(self.FeatureExtraction_output, hidden_size, hidden_size),
BidirectionalLSTM(hidden_size, hidden_size, hidden_size))
self.SequenceModeling_output = hidden_size
self.Prediction = nn.Linear(self.SequenceModeling_output, num_class)
def forward(self, input, text):
""" Feature extraction stage """
visual_feature = self.FeatureExtraction(input)
visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) # [b, c, h, w] -> [b, w, c, h]
visual_feature = visual_feature.squeeze(3)
""" Sequence modeling stage """
contextual_feature = self.SequenceModeling(visual_feature)
prediction = self.Prediction(contextual_feature.contiguous())
return prediction