Spaces:
Runtime error
Runtime error
init
Browse files- .gitignore +1 -0
- app.py +59 -3
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Aura/
|
app.py
CHANGED
@@ -1,7 +1,63 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
+
from gradio_imageslider import ImageSlider
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from aura_sr import AuraSR
|
7 |
+
import torch
|
8 |
+
import time
|
9 |
+
import spaces
|
10 |
|
11 |
+
# Force CPU usage
|
12 |
+
torch.set_default_tensor_type(torch.FloatTensor)
|
13 |
+
|
14 |
+
# Override torch.load to always use CPU
|
15 |
+
original_load = torch.load
|
16 |
+
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
|
17 |
+
|
18 |
+
# Initialize the AuraSR model
|
19 |
+
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
20 |
+
|
21 |
+
# Restore original torch.load
|
22 |
+
torch.load = original_load
|
23 |
+
|
24 |
+
def process_image(input_image, scale_factor):
|
25 |
+
if input_image is None:
|
26 |
+
raise gr.Error("Please provide an image to upscale.")
|
27 |
+
|
28 |
+
start_time = time.time()
|
29 |
+
|
30 |
+
# Convert to PIL Image for resizing
|
31 |
+
pil_image = Image.fromarray(input_image)
|
32 |
+
|
33 |
+
if scale_factor == 2:
|
34 |
+
pil_image = pil_image.resize((int(pil_image.width * 0.5), int(pil_image.height * 0.5)), Image.LANCZOS)
|
35 |
+
elif scale_factor == 3:
|
36 |
+
pil_image = pil_image.resize((int(pil_image.width * 0.75), int(pil_image.height * 0.75)), Image.LANCZOS)
|
37 |
+
|
38 |
+
# Upscale the image using AuraSR
|
39 |
+
upscaled_image = process_image_on_gpu(pil_image)
|
40 |
+
|
41 |
+
# Convert result to numpy array if it's not already
|
42 |
+
result_array = np.array(upscaled_image)
|
43 |
+
|
44 |
+
end_time = time.time()
|
45 |
+
processing_time = end_time - start_time
|
46 |
+
|
47 |
+
return [input_image, result_array], f"Processing time: {processing_time:.2f} seconds"
|
48 |
+
|
49 |
+
@spaces.GPU
|
50 |
+
def process_image_on_gpu(pil_image):
|
51 |
+
return aura_sr.upscale_4x(pil_image)
|
52 |
+
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
gr.Markdown("# Image Upscaler")
|
55 |
+
with gr.Row():
|
56 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
57 |
+
scale_factor = gr.Radio([2, 3, 4], label="Scale Factor", value=4)
|
58 |
+
image_slider = ImageSlider(label="Before/After")
|
59 |
+
upscale_button = gr.Button("Upscale")
|
60 |
+
processing_time_text = gr.Textbox(label="Processing Time")
|
61 |
+
upscale_button.click(fn=process_image, inputs=[input_image, scale_factor], outputs=[image_slider, processing_time_text])
|
62 |
|
|
|
63 |
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aura-sr==0.0.4
|
2 |
+
gradio==4.41.0
|
3 |
+
spaces==0.29.3
|
4 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
5 |
+
torch==2.3.1+cu121
|
6 |
+
torchaudio
|
7 |
+
torchvision
|
8 |
+
gradio_imageslider==0.0.20
|