|
import json |
|
import os |
|
|
|
import gradio as gr |
|
from distilabel.llms import InferenceEndpointsLLM, LlamaCppLLM |
|
from distilabel.steps.tasks.argillalabeller import ArgillaLabeller |
|
|
|
file_path = os.path.join(os.path.dirname(__file__), "Qwen2-5-0.5B-Instruct-f16.gguf") |
|
download_url = "https://huggingface.co/gaianet/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-Q5_K_S.gguf?download=true" |
|
|
|
|
|
if not os.path.exists(file_path): |
|
import requests |
|
import tqdm |
|
|
|
response = requests.get(download_url, stream=True) |
|
total_length = int(response.headers.get("content-length")) |
|
|
|
with open(file_path, "wb") as f: |
|
for chunk in tqdm.tqdm( |
|
response.iter_content(chunk_size=1024 * 1024), |
|
total=total_length / (1024 * 1024), |
|
unit="KB", |
|
unit_scale=True, |
|
): |
|
f.write(chunk) |
|
|
|
|
|
llm_cpp = LlamaCppLLM( |
|
model_path=file_path, |
|
n_gpu_layers=-1, |
|
n_ctx=1000 * 114, |
|
generation_kwargs={"max_new_tokens": 1000 * 14}, |
|
) |
|
task_cpp = ArgillaLabeller(llm=llm_cpp) |
|
task_cpp.load() |
|
|
|
llm_ep = InferenceEndpointsLLM( |
|
model_id="meta-llama/Meta-Llama-3.1-8B-Instruct", |
|
tokenizer_id="meta-llama/Meta-Llama-3.1-8B-Instruct", |
|
generation_kwargs={"max_new_tokens": 1000}, |
|
) |
|
task_ep = ArgillaLabeller(llm=llm_ep) |
|
task_ep.load() |
|
|
|
|
|
def load_examples(): |
|
with open("examples.json", "r") as f: |
|
return json.load(f) |
|
|
|
|
|
|
|
examples = load_examples()[:1] |
|
|
|
|
|
def process_fields(fields): |
|
if isinstance(fields, str): |
|
fields = json.loads(fields) |
|
if isinstance(fields, dict): |
|
fields = [fields] |
|
return [field if isinstance(field, dict) else json.loads(field) for field in fields] |
|
|
|
|
|
def process_records_gradio(records, fields, question, example_records=None): |
|
try: |
|
|
|
if isinstance(records, str) and records: |
|
records = json.loads(records) |
|
if isinstance(example_records, str) and example_records: |
|
example_records = json.loads(example_records) |
|
if isinstance(fields, str) and fields: |
|
fields = json.loads(fields) |
|
if isinstance(question, str) and question: |
|
question = json.loads(question) |
|
|
|
if not fields and not question: |
|
raise Exception("Error: Either fields or question must be provided") |
|
|
|
runtime_parameters = {"fields": fields, "question": question} |
|
if example_records: |
|
runtime_parameters["example_records"] = example_records |
|
|
|
task_ep.set_runtime_parameters(runtime_parameters) |
|
task_cpp.set_runtime_parameters(runtime_parameters) |
|
results = [] |
|
try: |
|
output = next( |
|
task_ep.process(inputs=[{"record": record} for record in records]) |
|
) |
|
except Exception: |
|
output = next( |
|
task_cpp.process(inputs=[{"record": record} for record in records]) |
|
) |
|
for idx in range(len(records)): |
|
entry = output[idx] |
|
if entry["suggestions"]: |
|
results.append(entry["suggestions"]) |
|
|
|
return json.dumps({"results": results}, indent=2) |
|
except Exception as e: |
|
raise gr.Error(f"Error: {str(e)}") |
|
|
|
|
|
description = """ |
|
An example workflow for JSON payload. |
|
|
|
```python |
|
import json |
|
import os |
|
from gradio_client import Client |
|
|
|
import argilla as rg |
|
|
|
# Initialize Argilla client |
|
gradio_client = Client("davidberenstein1957/distilabel-argilla-labeller") |
|
argilla_client = rg.Argilla( |
|
api_key=os.environ["ARGILLA_API_KEY"], api_url=os.environ["ARGILLA_API_URL"] |
|
) |
|
|
|
# Load the dataset |
|
dataset = argilla_client.datasets(name="my_dataset", workspace="my_workspace") |
|
|
|
# Get the field and question |
|
field = dataset.settings.fields["text"] |
|
question = dataset.settings.questions["sentiment"] |
|
|
|
# Get completed and pending records |
|
completed_records_filter = rg.Filter(("status", "==", "completed")) |
|
pending_records_filter = rg.Filter(("status", "==", "pending")) |
|
example_records = list( |
|
dataset.records( |
|
query=rg.Query(filter=completed_records_filter), |
|
limit=5, |
|
) |
|
) |
|
some_pending_records = list( |
|
dataset.records( |
|
query=rg.Query(filter=pending_records_filter), |
|
limit=5, |
|
) |
|
) |
|
|
|
# Process the records |
|
payload = { |
|
"records": [record.to_dict() for record in some_pending_records], |
|
"fields": [field.serialize()], |
|
"question": question.serialize(), |
|
"example_records": [record.to_dict() for record in example_records], |
|
"api_name": "/predict", |
|
} |
|
|
|
response = gradio_client.predict(**payload) |
|
``` |
|
""" |
|
|
|
interface = gr.Interface( |
|
fn=process_records_gradio, |
|
inputs=[ |
|
gr.Code(label="Records (JSON)", language="json", lines=5), |
|
gr.Code(label="Example Records (JSON, optional)", language="json", lines=5), |
|
gr.Code(label="Fields (JSON, optional)", language="json"), |
|
gr.Code(label="Question (JSON, optional)", language="json"), |
|
], |
|
examples=examples, |
|
cache_examples=False, |
|
outputs=gr.Code(label="Suggestions", language="json", lines=10), |
|
title="Distilabel - ArgillaLabeller - Record Processing Interface", |
|
description=description, |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|