Ben Burtenshaw
commited on
Commit
•
142be7a
1
Parent(s):
5776d7d
fix prose
Browse files- pages/2_👩🏼🔬 Describe Domain.py +281 -0
- pages/3_🌱 Generate Dataset.py +205 -0
- pages/4_🔍 Review Generated Data.py +48 -0
pages/2_👩🏼🔬 Describe Domain.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from hub import push_dataset_to_hub, pull_seed_data_from_repo
|
6 |
+
from infer import query
|
7 |
+
from defaults import (
|
8 |
+
N_PERSPECTIVES,
|
9 |
+
N_TOPICS,
|
10 |
+
SEED_DATA_PATH,
|
11 |
+
PIPELINE_PATH,
|
12 |
+
DATASET_REPO_ID,
|
13 |
+
)
|
14 |
+
from utils import project_sidebar, create_seed_terms, create_application_instruction
|
15 |
+
|
16 |
+
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="Domain Data Grower",
|
19 |
+
page_icon="🧑🌾",
|
20 |
+
)
|
21 |
+
project_sidebar()
|
22 |
+
|
23 |
+
|
24 |
+
################################################################################
|
25 |
+
# HEADER
|
26 |
+
################################################################################
|
27 |
+
|
28 |
+
st.header("🧑🌾 Domain Data Grower")
|
29 |
+
st.divider()
|
30 |
+
st.subheader(
|
31 |
+
"Step 2. Define the specific domain that you want to generate synthetic data for.",
|
32 |
+
)
|
33 |
+
st.write(
|
34 |
+
"Define the project details, including the project name, domain, and API credentials"
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
################################################################################
|
39 |
+
# LOAD EXISTING DOMAIN DATA
|
40 |
+
################################################################################
|
41 |
+
|
42 |
+
DATASET_REPO_ID = (
|
43 |
+
f"{st.session_state['hub_username']}/{st.session_state['project_name']}"
|
44 |
+
)
|
45 |
+
SEED_DATA = pull_seed_data_from_repo(
|
46 |
+
DATASET_REPO_ID, hub_token=st.session_state["hub_token"]
|
47 |
+
)
|
48 |
+
DEFAULT_DOMAIN = SEED_DATA.get("domain", "")
|
49 |
+
DEFAULT_PERSPECTIVES = SEED_DATA.get("perspectives", [""])
|
50 |
+
DEFAULT_TOPICS = SEED_DATA.get("topics", [""])
|
51 |
+
DEFAULT_EXAMPLES = SEED_DATA.get("examples", [{"question": "", "answer": ""}])
|
52 |
+
DEFAULT_SYSTEM_PROMPT = SEED_DATA.get("domain_expert_prompt", "")
|
53 |
+
|
54 |
+
################################################################################
|
55 |
+
# Domain Expert Section
|
56 |
+
################################################################################
|
57 |
+
|
58 |
+
(
|
59 |
+
tab_domain_expert,
|
60 |
+
tab_domain_perspectives,
|
61 |
+
tab_domain_topics,
|
62 |
+
tab_examples,
|
63 |
+
tab_raw_seed,
|
64 |
+
) = st.tabs(
|
65 |
+
tabs=[
|
66 |
+
"👩🏼🔬 Domain Expert",
|
67 |
+
"🔍 Domain Perspectives",
|
68 |
+
"🕸️ Domain Topics",
|
69 |
+
"📚 Examples",
|
70 |
+
"🌱 Raw Seed Data",
|
71 |
+
]
|
72 |
+
)
|
73 |
+
|
74 |
+
with tab_domain_expert:
|
75 |
+
st.text("Define the domain expertise that you want to train a language model")
|
76 |
+
st.info(
|
77 |
+
"A domain expert is a person who is an expert in a particular field or area. For example, a domain expert in farming would be someone who has extensive knowledge and experience in farming and agriculture."
|
78 |
+
)
|
79 |
+
|
80 |
+
domain = st.text_input("Domain Name", DEFAULT_DOMAIN)
|
81 |
+
|
82 |
+
domain_expert_prompt = st.text_area(
|
83 |
+
label="Domain Expert Definition",
|
84 |
+
value=DEFAULT_SYSTEM_PROMPT,
|
85 |
+
height=200,
|
86 |
+
)
|
87 |
+
|
88 |
+
################################################################################
|
89 |
+
# Domain Perspectives
|
90 |
+
################################################################################
|
91 |
+
|
92 |
+
with tab_domain_perspectives:
|
93 |
+
st.text("Define the different perspectives from which the domain can be viewed")
|
94 |
+
st.info(
|
95 |
+
"""
|
96 |
+
Perspectives are different viewpoints or angles from which a domain can be viewed.
|
97 |
+
For example, the domain of farming can be viewed from the perspective of a commercial
|
98 |
+
farmer or an independent family farmer."""
|
99 |
+
)
|
100 |
+
|
101 |
+
perspectives = st.session_state.get(
|
102 |
+
"perspectives",
|
103 |
+
[DEFAULT_PERSPECTIVES[0]],
|
104 |
+
)
|
105 |
+
perspectives_container = st.container()
|
106 |
+
|
107 |
+
perspectives = [
|
108 |
+
perspectives_container.text_input(
|
109 |
+
f"Domain Perspective {i + 1}", value=perspective
|
110 |
+
)
|
111 |
+
for i, perspective in enumerate(perspectives)
|
112 |
+
]
|
113 |
+
|
114 |
+
if st.button("Add Perspective", key="add_perspective"):
|
115 |
+
n = len(perspectives)
|
116 |
+
value = DEFAULT_PERSPECTIVES[n] if n < N_PERSPECTIVES else ""
|
117 |
+
perspectives.append(
|
118 |
+
perspectives_container.text_input(f"Domain Perspective {n + 1}", value="")
|
119 |
+
)
|
120 |
+
|
121 |
+
st.session_state["perspectives"] = perspectives
|
122 |
+
|
123 |
+
|
124 |
+
################################################################################
|
125 |
+
# Domain Topics
|
126 |
+
################################################################################
|
127 |
+
|
128 |
+
with tab_domain_topics:
|
129 |
+
st.text("Define the main themes or subjects that are relevant to the domain")
|
130 |
+
st.info(
|
131 |
+
"""Topics are the main themes or subjects that are relevant to the domain. For example, the domain of farming can have topics like soil health, crop rotation, or livestock management."""
|
132 |
+
)
|
133 |
+
topics = st.session_state.get(
|
134 |
+
"topics",
|
135 |
+
[DEFAULT_TOPICS[0]],
|
136 |
+
)
|
137 |
+
topics_container = st.container()
|
138 |
+
topics = [
|
139 |
+
topics_container.text_input(f"Domain Topic {i + 1}", value=topic)
|
140 |
+
for i, topic in enumerate(topics)
|
141 |
+
]
|
142 |
+
|
143 |
+
if st.button("Add Topic", key="add_topic"):
|
144 |
+
n = len(topics)
|
145 |
+
value = DEFAULT_TOPICS[n] if n < N_TOPICS else ""
|
146 |
+
topics.append(topics_container.text_input(f"Domain Topics {n + 1}", value=""))
|
147 |
+
|
148 |
+
st.session_state["topics"] = topics
|
149 |
+
|
150 |
+
|
151 |
+
################################################################################
|
152 |
+
# Examples Section
|
153 |
+
################################################################################
|
154 |
+
|
155 |
+
with tab_examples:
|
156 |
+
st.text(
|
157 |
+
"Add high-quality questions and answers that can be used to generate synthetic data"
|
158 |
+
)
|
159 |
+
st.info(
|
160 |
+
"""
|
161 |
+
Examples are high-quality questions and answers that can be used to generate
|
162 |
+
synthetic data for the domain. These examples will be used to train the language model
|
163 |
+
to generate questions and answers.
|
164 |
+
"""
|
165 |
+
)
|
166 |
+
|
167 |
+
examples = st.session_state.get(
|
168 |
+
"examples",
|
169 |
+
[
|
170 |
+
{
|
171 |
+
"question": "",
|
172 |
+
"answer": "",
|
173 |
+
}
|
174 |
+
],
|
175 |
+
)
|
176 |
+
|
177 |
+
for n, example in enumerate(examples, 1):
|
178 |
+
question = example["question"]
|
179 |
+
answer = example["answer"]
|
180 |
+
examples_container = st.container()
|
181 |
+
question_column, answer_column = examples_container.columns(2)
|
182 |
+
|
183 |
+
if st.button(f"Generate Answer {n}"):
|
184 |
+
if st.session_state["hub_token"] is None:
|
185 |
+
st.error("Please provide a Hub token to generate answers")
|
186 |
+
else:
|
187 |
+
answer = query(question, st.session_state["hub_token"])
|
188 |
+
with question_column:
|
189 |
+
question = st.text_area(f"Question {n}", value=question)
|
190 |
+
|
191 |
+
with answer_column:
|
192 |
+
answer = st.text_area(f"Answer {n}", value=answer)
|
193 |
+
examples[n - 1] = {"question": question, "answer": answer}
|
194 |
+
st.session_state["examples"] = examples
|
195 |
+
st.divider()
|
196 |
+
|
197 |
+
if st.button("Add Example"):
|
198 |
+
examples.append({"question": "", "answer": ""})
|
199 |
+
st.session_state["examples"] = examples
|
200 |
+
st.rerun()
|
201 |
+
|
202 |
+
################################################################################
|
203 |
+
# Save Domain Data
|
204 |
+
################################################################################
|
205 |
+
|
206 |
+
perspectives = list(filter(None, perspectives))
|
207 |
+
topics = list(filter(None, topics))
|
208 |
+
|
209 |
+
domain_data = {
|
210 |
+
"domain": domain,
|
211 |
+
"perspectives": perspectives,
|
212 |
+
"topics": topics,
|
213 |
+
"examples": examples,
|
214 |
+
"domain_expert_prompt": domain_expert_prompt,
|
215 |
+
"application_instruction": create_application_instruction(domain, examples),
|
216 |
+
"seed_terms": create_seed_terms(topics, perspectives),
|
217 |
+
}
|
218 |
+
|
219 |
+
with open(SEED_DATA_PATH, "w") as f:
|
220 |
+
json.dump(domain_data, f, indent=2)
|
221 |
+
|
222 |
+
with tab_raw_seed:
|
223 |
+
st.code(json.dumps(domain_data, indent=2), language="json", line_numbers=True)
|
224 |
+
|
225 |
+
################################################################################
|
226 |
+
# Setup Dataset on the Hub
|
227 |
+
################################################################################
|
228 |
+
|
229 |
+
st.divider()
|
230 |
+
|
231 |
+
|
232 |
+
if st.button("🤗 Push Dataset Seed") and all(
|
233 |
+
(
|
234 |
+
domain,
|
235 |
+
domain_expert_prompt,
|
236 |
+
perspectives,
|
237 |
+
topics,
|
238 |
+
examples,
|
239 |
+
)
|
240 |
+
):
|
241 |
+
if all(
|
242 |
+
(
|
243 |
+
st.session_state.get("project_name"),
|
244 |
+
st.session_state.get("hub_username"),
|
245 |
+
st.session_state.get("hub_token"),
|
246 |
+
)
|
247 |
+
):
|
248 |
+
project_name = st.session_state["project_name"]
|
249 |
+
hub_username = st.session_state["hub_username"]
|
250 |
+
hub_token = st.session_state["hub_token"]
|
251 |
+
else:
|
252 |
+
st.error(
|
253 |
+
"Please create a dataset repo on the Hub before pushing the dataset seed"
|
254 |
+
)
|
255 |
+
st.stop()
|
256 |
+
|
257 |
+
push_dataset_to_hub(
|
258 |
+
domain_seed_data_path=SEED_DATA_PATH,
|
259 |
+
project_name=project_name,
|
260 |
+
domain=domain,
|
261 |
+
hub_username=hub_username,
|
262 |
+
hub_token=hub_token,
|
263 |
+
pipeline_path=PIPELINE_PATH,
|
264 |
+
)
|
265 |
+
|
266 |
+
st.success(
|
267 |
+
f"Dataset seed created and pushed to the Hub. Check it out [here](https://huggingface.co/datasets/{hub_username}/{project_name})"
|
268 |
+
)
|
269 |
+
|
270 |
+
st.write("You can now move on to runnning your distilabel pipeline.")
|
271 |
+
|
272 |
+
st.page_link(
|
273 |
+
page="pages/3_🌱 Generate Dataset.py",
|
274 |
+
label="Generate Dataset",
|
275 |
+
icon="🌱",
|
276 |
+
)
|
277 |
+
|
278 |
+
else:
|
279 |
+
st.info(
|
280 |
+
"Please fill in all the required domain fields to push the dataset seed to the Hub"
|
281 |
+
)
|
pages/3_🌱 Generate Dataset.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from defaults import ARGILLA_URL
|
4 |
+
from hub import push_pipeline_params
|
5 |
+
from utils import project_sidebar
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="Domain Data Grower",
|
9 |
+
page_icon="🧑🌾",
|
10 |
+
)
|
11 |
+
|
12 |
+
project_sidebar()
|
13 |
+
|
14 |
+
################################################################################
|
15 |
+
# HEADER
|
16 |
+
################################################################################
|
17 |
+
|
18 |
+
st.header("🧑🌾 Domain Data Grower")
|
19 |
+
st.divider()
|
20 |
+
st.subheader("Step 3. Run the pipeline to generate synthetic data")
|
21 |
+
st.write("Define the distilabel pipeline for generating the dataset.")
|
22 |
+
|
23 |
+
hub_username = st.session_state.get("hub_username")
|
24 |
+
project_name = st.session_state.get("project_name")
|
25 |
+
hub_token = st.session_state.get("hub_token")
|
26 |
+
|
27 |
+
###############################################################
|
28 |
+
# CONFIGURATION
|
29 |
+
###############################################################
|
30 |
+
|
31 |
+
st.divider()
|
32 |
+
|
33 |
+
st.markdown("## 🧰 Pipeline Configuration")
|
34 |
+
|
35 |
+
st.write(
|
36 |
+
"Now we need to define the configuration for the pipeline that will generate the synthetic data."
|
37 |
+
)
|
38 |
+
st.write(
|
39 |
+
"⚠️ Model and parameter choices significantly affect the quality of the generated data. \
|
40 |
+
We reccomend that you start with generating a few samples and review the data. Then scale up from there. \
|
41 |
+
You can run the pipeline multiple times with different configurations and append it to the same Argilla dataset."
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
st.markdown("#### 🤖 Inference configuration")
|
46 |
+
|
47 |
+
st.write(
|
48 |
+
"Add the url of the Huggingface inference API or endpoint that your pipeline should use. You can find compatible models here:"
|
49 |
+
)
|
50 |
+
|
51 |
+
with st.expander("🤗 Recommended Models"):
|
52 |
+
st.write("All inference endpoint compatible models can be found via the link below")
|
53 |
+
st.link_button(
|
54 |
+
"🤗 Inference compaptible models on the hub",
|
55 |
+
"https://huggingface.co/models?pipeline_tag=text-generation&other=endpoints_compatible&sort=trending",
|
56 |
+
)
|
57 |
+
st.write("🔋Projects with sufficient resources could take advantage of LLama3 70b")
|
58 |
+
st.code(
|
59 |
+
"https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
60 |
+
)
|
61 |
+
|
62 |
+
st.write("🪫Projects with less resources could take advantage of LLama 3 8b")
|
63 |
+
st.code(
|
64 |
+
"https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
65 |
+
)
|
66 |
+
|
67 |
+
st.write("🍃Projects with even less resources could use Phi-3-mini-4k-instruct")
|
68 |
+
st.code(
|
69 |
+
"https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
|
70 |
+
)
|
71 |
+
|
72 |
+
st.write("Note Hugggingface Pro gives access to more compute resources")
|
73 |
+
st.link_button(
|
74 |
+
"🤗 Huggingface Pro",
|
75 |
+
"https://huggingface.co/pricing",
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
self_instruct_base_url = st.text_input(
|
80 |
+
label="Model base URL for instruction generation",
|
81 |
+
value="https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct",
|
82 |
+
)
|
83 |
+
domain_expert_base_url = st.text_input(
|
84 |
+
label="Model base URL for domain expert response",
|
85 |
+
value="https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct",
|
86 |
+
)
|
87 |
+
|
88 |
+
st.divider()
|
89 |
+
st.markdown("#### 🧮 Parameters configuration")
|
90 |
+
|
91 |
+
self_intruct_num_generations = st.slider(
|
92 |
+
"Number of generations for self-instruction", 1, 10, 2
|
93 |
+
)
|
94 |
+
domain_expert_num_generations = st.slider(
|
95 |
+
"Number of generations for domain expert response", 1, 10, 2
|
96 |
+
)
|
97 |
+
self_instruct_temperature = st.slider("Temperature for self-instruction", 0.1, 1.0, 0.9)
|
98 |
+
domain_expert_temperature = st.slider("Temperature for domain expert", 0.1, 1.0, 0.9)
|
99 |
+
|
100 |
+
st.divider()
|
101 |
+
st.markdown("#### 🔬 Argilla API details to push the generated dataset")
|
102 |
+
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL)
|
103 |
+
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey")
|
104 |
+
argilla_dataset_name = st.text_input("Argilla Dataset Name", project_name)
|
105 |
+
st.divider()
|
106 |
+
|
107 |
+
###############################################################
|
108 |
+
# LOCAL
|
109 |
+
###############################################################
|
110 |
+
|
111 |
+
st.markdown("## Run the pipeline")
|
112 |
+
|
113 |
+
st.markdown(
|
114 |
+
"Once you've defined the pipeline configuration above, you can run the pipeline from your local machine."
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
if all(
|
119 |
+
[
|
120 |
+
argilla_api_key,
|
121 |
+
argilla_url,
|
122 |
+
self_instruct_base_url,
|
123 |
+
domain_expert_base_url,
|
124 |
+
self_intruct_num_generations,
|
125 |
+
domain_expert_num_generations,
|
126 |
+
self_instruct_temperature,
|
127 |
+
domain_expert_temperature,
|
128 |
+
hub_username,
|
129 |
+
project_name,
|
130 |
+
hub_token,
|
131 |
+
argilla_dataset_name,
|
132 |
+
]
|
133 |
+
) and st.button("💾 Save Pipeline Config"):
|
134 |
+
with st.spinner("Pushing pipeline to the Hub..."):
|
135 |
+
push_pipeline_params(
|
136 |
+
pipeline_params={
|
137 |
+
"argilla_api_key": argilla_api_key,
|
138 |
+
"argilla_api_url": argilla_url,
|
139 |
+
"argilla_dataset_name": argilla_dataset_name,
|
140 |
+
"self_instruct_base_url": self_instruct_base_url,
|
141 |
+
"domain_expert_base_url": domain_expert_base_url,
|
142 |
+
"self_instruct_temperature": self_instruct_temperature,
|
143 |
+
"domain_expert_temperature": domain_expert_temperature,
|
144 |
+
"self_intruct_num_generations": self_intruct_num_generations,
|
145 |
+
"domain_expert_num_generations": domain_expert_num_generations,
|
146 |
+
},
|
147 |
+
hub_username=hub_username,
|
148 |
+
hub_token=hub_token,
|
149 |
+
project_name=project_name,
|
150 |
+
)
|
151 |
+
|
152 |
+
st.success(
|
153 |
+
f"Pipeline configuration pushed to the dataset repo {hub_username}/{project_name} on the Hub."
|
154 |
+
)
|
155 |
+
|
156 |
+
st.markdown(
|
157 |
+
"To run the pipeline locally, you need to have the `distilabel` library installed. You can install it using the following command:"
|
158 |
+
)
|
159 |
+
|
160 |
+
st.code(
|
161 |
+
f"""
|
162 |
+
|
163 |
+
# Install the distilabel library
|
164 |
+
pip install distilabel
|
165 |
+
"""
|
166 |
+
)
|
167 |
+
|
168 |
+
st.markdown("Next, you'll need to clone your dataset repo and run the pipeline:")
|
169 |
+
|
170 |
+
st.code(
|
171 |
+
f"""
|
172 |
+
git clone https://github.com/huggingface/data-is-better-together
|
173 |
+
cd data-is-better-together/domain-specific-datasets/pipelines
|
174 |
+
pip install -r requirements.txt
|
175 |
+
"""
|
176 |
+
)
|
177 |
+
|
178 |
+
st.markdown("Finally, you can run the pipeline using the following command:")
|
179 |
+
|
180 |
+
st.code(
|
181 |
+
f"""
|
182 |
+
huggingface-cli login
|
183 |
+
python domain_expert_pipeline.py {hub_username}/{project_name}""",
|
184 |
+
language="bash",
|
185 |
+
)
|
186 |
+
st.markdown(
|
187 |
+
"👩🚀 If you want to customise the pipeline take a look in `pipeline.py` and teh [distilabel docs](https://distilabel.argilla.io/)"
|
188 |
+
)
|
189 |
+
|
190 |
+
st.markdown(
|
191 |
+
"🚀 Once you've run the pipeline your records will be available in the Argilla space"
|
192 |
+
)
|
193 |
+
|
194 |
+
st.link_button("🔗 Argilla Space", argilla_url)
|
195 |
+
|
196 |
+
st.markdown("Once you've reviewed the data, you can publish it on the next page:")
|
197 |
+
|
198 |
+
st.page_link(
|
199 |
+
page="pages/4_🔍 Review Generated Data.py",
|
200 |
+
label="Review Generated Data",
|
201 |
+
icon="🔍",
|
202 |
+
)
|
203 |
+
|
204 |
+
else:
|
205 |
+
st.info("Please fill all the required fields.")
|
pages/4_🔍 Review Generated Data.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from defaults import PROJECT_NAME, ARGILLA_URL, DATASET_REPO_ID
|
4 |
+
from utils import project_sidebar
|
5 |
+
from hub import push_argilla_dataset_to_hub
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="Domain Data Grower",
|
9 |
+
page_icon="🧑🌾",
|
10 |
+
)
|
11 |
+
|
12 |
+
project_sidebar()
|
13 |
+
|
14 |
+
################################################################################
|
15 |
+
# HEADER
|
16 |
+
################################################################################
|
17 |
+
|
18 |
+
st.header("🧑🌾 Domain Data Grower")
|
19 |
+
st.divider()
|
20 |
+
|
21 |
+
st.write(
|
22 |
+
"""Once you have reviewed the synthetic data in Argilla, you can publish the
|
23 |
+
generated dataset to the Hub."""
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
################################################################################
|
28 |
+
# Configuration
|
29 |
+
################################################################################
|
30 |
+
|
31 |
+
st.divider()
|
32 |
+
st.write("🔬 Argilla API details to push the generated dataset")
|
33 |
+
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL)
|
34 |
+
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey")
|
35 |
+
argilla_dataset_name = st.text_input("Argilla Dataset Name", PROJECT_NAME)
|
36 |
+
dataset_repo_id = st.text_input("Dataset Repo ID", DATASET_REPO_ID)
|
37 |
+
st.divider()
|
38 |
+
|
39 |
+
if st.button("🚀 Publish the generated dataset"):
|
40 |
+
with st.spinner("Publishing the generated dataset..."):
|
41 |
+
push_argilla_dataset_to_hub(
|
42 |
+
name=argilla_dataset_name,
|
43 |
+
repo_id=dataset_repo_id,
|
44 |
+
url=argilla_url,
|
45 |
+
api_key=argilla_api_key,
|
46 |
+
workspace="admin",
|
47 |
+
)
|
48 |
+
st.success("The generated dataset has been published to the Hub.")
|