Ben Burtenshaw
commited on
Commit
β’
3c9d064
1
Parent(s):
0ac0929
transfer pipeline
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from hub import (
|
|
4 |
setup_dataset_on_hub,
|
5 |
duplicate_space_on_hub,
|
6 |
add_project_config_to_space_repo,
|
|
|
7 |
)
|
8 |
|
9 |
import streamlit as st
|
@@ -107,6 +108,13 @@ if st.button("π€ Setup Project Resources"):
|
|
107 |
argilla_space_repo_id=f"{hub_username}/{argilla_name}",
|
108 |
project_space_repo_id=f"{hub_username}/{space_name}",
|
109 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
st.subheader("π’ Next Steps")
|
112 |
|
|
|
4 |
setup_dataset_on_hub,
|
5 |
duplicate_space_on_hub,
|
6 |
add_project_config_to_space_repo,
|
7 |
+
push_pipeline_to_hub,
|
8 |
)
|
9 |
|
10 |
import streamlit as st
|
|
|
108 |
argilla_space_repo_id=f"{hub_username}/{argilla_name}",
|
109 |
project_space_repo_id=f"{hub_username}/{space_name}",
|
110 |
)
|
111 |
+
|
112 |
+
push_pipeline_to_hub(
|
113 |
+
pipeline_path="pipeline.py",
|
114 |
+
hub_username=hub_username,
|
115 |
+
hub_token=hub_token,
|
116 |
+
project_name=project_name,
|
117 |
+
)
|
118 |
|
119 |
st.subheader("π’ Next Steps")
|
120 |
|
hub.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import json
|
|
|
|
|
2 |
|
3 |
from huggingface_hub import duplicate_space, HfApi
|
4 |
|
@@ -61,3 +63,32 @@ def add_project_config_to_space_repo(
|
|
61 |
repo_id=project_space_repo_id,
|
62 |
repo_type="space",
|
63 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
+
from tempfile import mktemp
|
3 |
+
|
4 |
|
5 |
from huggingface_hub import duplicate_space, HfApi
|
6 |
|
|
|
63 |
repo_id=project_space_repo_id,
|
64 |
repo_type="space",
|
65 |
)
|
66 |
+
|
67 |
+
|
68 |
+
def pull_seed_data_from_repo(repo_id, hub_token):
|
69 |
+
tempfile_path = mktemp()
|
70 |
+
# pull the dataset repo from the hub
|
71 |
+
hf_api.hf_hub_download(
|
72 |
+
repo_id=repo_id, token=hub_token, repo_type="dataset", filename=tempfile_path
|
73 |
+
)
|
74 |
+
return json.load(open(tempfile_path))
|
75 |
+
|
76 |
+
|
77 |
+
def push_pipeline_to_hub(
|
78 |
+
pipeline_path,
|
79 |
+
hub_username,
|
80 |
+
hub_token: str,
|
81 |
+
project_name,
|
82 |
+
):
|
83 |
+
repo_id = f"{hub_username}/{project_name}"
|
84 |
+
|
85 |
+
# upload the pipeline to the hub
|
86 |
+
hf_api.upload_file(
|
87 |
+
path_or_fileobj=pipeline_path,
|
88 |
+
path_in_repo="pipeline.py",
|
89 |
+
token=hub_token,
|
90 |
+
repo_id=repo_id,
|
91 |
+
repo_type="dataset",
|
92 |
+
)
|
93 |
+
|
94 |
+
print(f"pipeline.py uploaded to {repo_id}")
|
pipeline.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from textwrap import dedent
|
3 |
+
from typing import Any, Dict, List
|
4 |
+
|
5 |
+
from distilabel.llms.huggingface import InferenceEndpointsLLM
|
6 |
+
from distilabel.pipeline import Pipeline
|
7 |
+
from distilabel.steps import TextGenerationToArgilla
|
8 |
+
from distilabel.steps.expand import ExpandColumns
|
9 |
+
from distilabel.steps.generators.data import LoadDataFromDicts
|
10 |
+
from distilabel.steps.tasks.self_instruct import SelfInstruct
|
11 |
+
from distilabel.steps.tasks.text_generation import TextGeneration
|
12 |
+
from distilabel.steps.tasks.typing import ChatType
|
13 |
+
|
14 |
+
|
15 |
+
################################################################################
|
16 |
+
# Functions to create task prompts
|
17 |
+
################################################################################
|
18 |
+
|
19 |
+
|
20 |
+
def create_application_instruction(domain: str, examples: List[Dict[str, str]]):
|
21 |
+
"""Create the instruction for Self-Instruct task."""
|
22 |
+
system_prompt = dedent(
|
23 |
+
f"""You are an AI assistant than generates queries around the domain of {domain}.
|
24 |
+
Your should not expect basic but profound questions from your users.
|
25 |
+
The queries should reflect a diversxamity of vision and economic positions and political positions.
|
26 |
+
The queries may know about different methods of {domain}.
|
27 |
+
The queries can be positioned politically, economically, socially, or practically.
|
28 |
+
Also take into account the impact of diverse causes on diverse domains."""
|
29 |
+
)
|
30 |
+
for example in examples:
|
31 |
+
question = example["question"]
|
32 |
+
answer = example["answer"]
|
33 |
+
system_prompt += f"""\n- Question: {question}\n- Answer: {answer}\n"""
|
34 |
+
|
35 |
+
|
36 |
+
def create_seed_terms(topics: List[str], perspectives: List[str]) -> List[str]:
|
37 |
+
"""Create seed terms for self intruct to start from."""
|
38 |
+
|
39 |
+
return [
|
40 |
+
f"{topic} from a {perspective} perspective"
|
41 |
+
for topic in topics
|
42 |
+
for perspective in perspectives
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
################################################################################
|
47 |
+
# Define out custom step for the domain expert
|
48 |
+
################################################################################
|
49 |
+
|
50 |
+
|
51 |
+
class DomainExpert(TextGeneration):
|
52 |
+
"""A customized task to generate text as a domain expert in the domain of farming and agriculture."""
|
53 |
+
|
54 |
+
system_prompt: str
|
55 |
+
template: str = """This is the the instruction: {instruction}"""
|
56 |
+
|
57 |
+
def format_input(self, input: Dict[str, Any]) -> "ChatType":
|
58 |
+
return [
|
59 |
+
{
|
60 |
+
"role": "system",
|
61 |
+
"content": self.system_prompt,
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"role": "user",
|
65 |
+
"content": self.template.format(**input),
|
66 |
+
},
|
67 |
+
]
|
68 |
+
|
69 |
+
|
70 |
+
################################################################################
|
71 |
+
# Main script to run the pipeline
|
72 |
+
################################################################################
|
73 |
+
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
import argparse
|
77 |
+
import json
|
78 |
+
|
79 |
+
parser = argparse.ArgumentParser(
|
80 |
+
description="Run the pipeline to generate domain-specific datasets."
|
81 |
+
)
|
82 |
+
parser.add_argument("--hub-token", type=str, help="The Hugging Face API token.")
|
83 |
+
parser.add_argument("--argilla-api-key", type=str, help="The Argilla API key.")
|
84 |
+
parser.add_argument("--argilla-api-url", type=str, help="The Argilla API URL.")
|
85 |
+
parser.add_argument(
|
86 |
+
"--argilla-dataset-name", type=str, help="The name of the dataset in Argilla."
|
87 |
+
)
|
88 |
+
parser.add_argument(
|
89 |
+
"--seed_data_path",
|
90 |
+
type=str,
|
91 |
+
help="The path to the seed data.",
|
92 |
+
default="seed_data.json",
|
93 |
+
)
|
94 |
+
parser.add_argument(
|
95 |
+
"--endpoint-base-url", type=str, help="The base URL of the inference endpoint."
|
96 |
+
)
|
97 |
+
|
98 |
+
args = parser.parse_args()
|
99 |
+
|
100 |
+
# collect our seed data
|
101 |
+
|
102 |
+
with open(args.seed_data_path, "r") as f:
|
103 |
+
seed_data = json.load(f)
|
104 |
+
|
105 |
+
topics = seed_data.get("topics", [])
|
106 |
+
perspectives = seed_data.get("perspectives", [])
|
107 |
+
domain_expert_prompt = seed_data.get("domain_expert_prompt", "")
|
108 |
+
examples = seed_data.get("examples", [])
|
109 |
+
domain_name = seed_data.get("domain_name", "domain")
|
110 |
+
|
111 |
+
# Define the task prompts
|
112 |
+
|
113 |
+
terms = create_seed_terms(topics=topics, perspectives=perspectives)
|
114 |
+
application_instruction = create_application_instruction(
|
115 |
+
domain=domain_name, examples=examples
|
116 |
+
)
|
117 |
+
|
118 |
+
# Define the distilabel pipeline
|
119 |
+
|
120 |
+
with Pipeline(domain_name) as pipeline:
|
121 |
+
load_data = LoadDataFromDicts(
|
122 |
+
name="load_data",
|
123 |
+
data=[{"input": term} for term in terms],
|
124 |
+
batch_size=64,
|
125 |
+
)
|
126 |
+
|
127 |
+
self_instruct = SelfInstruct(
|
128 |
+
name="self_instruct",
|
129 |
+
num_instructions=5,
|
130 |
+
input_batch_size=8,
|
131 |
+
llm=InferenceEndpointsLLM(
|
132 |
+
base_url=args.endpoint_base_url,
|
133 |
+
api_key=args.hub_token,
|
134 |
+
),
|
135 |
+
)
|
136 |
+
|
137 |
+
expand_instructions = ExpandColumns(
|
138 |
+
name="expand_columns", columns={"instructions": "instruction"}
|
139 |
+
)
|
140 |
+
|
141 |
+
domain_expert = DomainExpert(
|
142 |
+
name="domain_expert",
|
143 |
+
llm=InferenceEndpointsLLM(
|
144 |
+
base_url=args.endpoint_base_url,
|
145 |
+
api_key=args.hub_token,
|
146 |
+
),
|
147 |
+
input_batch_size=8,
|
148 |
+
system_prompt=domain_expert_prompt,
|
149 |
+
)
|
150 |
+
|
151 |
+
to_argilla = TextGenerationToArgilla(
|
152 |
+
name="text_generation_to_argilla",
|
153 |
+
dataset_name=args.argilla_dataset_name,
|
154 |
+
dataset_workspace="admin",
|
155 |
+
api_url=args.argilla_api_url,
|
156 |
+
api_key=args.argilla_api_key,
|
157 |
+
)
|
158 |
+
|
159 |
+
# Connect up the pipeline
|
160 |
+
|
161 |
+
load_data.connect(self_instruct)
|
162 |
+
self_instruct.connect(expand_instructions)
|
163 |
+
expand_instructions.connect(domain_expert)
|
164 |
+
domain_expert.connect(to_argilla)
|
165 |
+
|
166 |
+
# Run the pipeline
|
167 |
+
|
168 |
+
pipeline.run(
|
169 |
+
parameters={
|
170 |
+
"self_instruct": {
|
171 |
+
"llm": {"api_key": args.hub_token, "base_url": args.endpoint_base_url}
|
172 |
+
},
|
173 |
+
"domain_expert": {
|
174 |
+
"llm": {"api_key": args.hub_token, "base_url": args.endpoint_base_url}
|
175 |
+
},
|
176 |
+
"text_generation_to_argilla": {
|
177 |
+
"dataset_name": args.argilla_dataset_name,
|
178 |
+
"api_key": args.argilla_api_key,
|
179 |
+
"api_url": args.argilla_api_url,
|
180 |
+
},
|
181 |
+
},
|
182 |
+
use_cache=False,
|
183 |
+
)
|
utils.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
from defaults import (
|
4 |
-
ARGILLA_SPACE_REPO_ID,
|
5 |
-
PROJECT_NAME,
|
6 |
-
ARGILLA_URL,
|
7 |
-
DIBT_PARENT_APP_URL,
|
8 |
-
DATASET_URL,
|
9 |
-
DATASET_REPO_ID,
|
10 |
-
ARGILLA_SPACE_REPO_ID,
|
11 |
-
)
|
12 |
-
|
13 |
-
|
14 |
-
def project_sidebar():
|
15 |
-
if PROJECT_NAME == "DEFAULT_DOMAIN":
|
16 |
-
st.warning(
|
17 |
-
"Please set up the project configuration in the parent app before proceeding."
|
18 |
-
)
|
19 |
-
st.stop()
|
20 |
-
|
21 |
-
st.sidebar.subheader(f"A Data Growing Project in the domain of {PROJECT_NAME}")
|
22 |
-
st.sidebar.markdown(
|
23 |
-
"""
|
24 |
-
This space helps you create a dataset seed for building diverse domain-specific datasets for aligning models.
|
25 |
-
"""
|
26 |
-
)
|
27 |
-
st.sidebar.link_button(f"π Dataset Repo", DATASET_URL)
|
28 |
-
st.sidebar.link_button(f"π€ Argilla Space", ARGILLA_URL)
|
29 |
-
st.sidebar.divider()
|
30 |
-
st.sidebar.link_button("π§βπΎ New Project", DIBT_PARENT_APP_URL)
|
31 |
-
st.sidebar.link_button(
|
32 |
-
"π€ Get your Hub Token", "https://huggingface.co/settings/tokens"
|
33 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|