Ben Burtenshaw commited on
Commit
3c9d064
β€’
1 Parent(s): 0ac0929

transfer pipeline

Browse files
Files changed (4) hide show
  1. app.py +8 -0
  2. hub.py +31 -0
  3. pipeline.py +183 -0
  4. utils.py +0 -33
app.py CHANGED
@@ -4,6 +4,7 @@ from hub import (
4
  setup_dataset_on_hub,
5
  duplicate_space_on_hub,
6
  add_project_config_to_space_repo,
 
7
  )
8
 
9
  import streamlit as st
@@ -107,6 +108,13 @@ if st.button("πŸ€— Setup Project Resources"):
107
  argilla_space_repo_id=f"{hub_username}/{argilla_name}",
108
  project_space_repo_id=f"{hub_username}/{space_name}",
109
  )
 
 
 
 
 
 
 
110
 
111
  st.subheader("πŸ‘’ Next Steps")
112
 
 
4
  setup_dataset_on_hub,
5
  duplicate_space_on_hub,
6
  add_project_config_to_space_repo,
7
+ push_pipeline_to_hub,
8
  )
9
 
10
  import streamlit as st
 
108
  argilla_space_repo_id=f"{hub_username}/{argilla_name}",
109
  project_space_repo_id=f"{hub_username}/{space_name}",
110
  )
111
+
112
+ push_pipeline_to_hub(
113
+ pipeline_path="pipeline.py",
114
+ hub_username=hub_username,
115
+ hub_token=hub_token,
116
+ project_name=project_name,
117
+ )
118
 
119
  st.subheader("πŸ‘’ Next Steps")
120
 
hub.py CHANGED
@@ -1,4 +1,6 @@
1
  import json
 
 
2
 
3
  from huggingface_hub import duplicate_space, HfApi
4
 
@@ -61,3 +63,32 @@ def add_project_config_to_space_repo(
61
  repo_id=project_space_repo_id,
62
  repo_type="space",
63
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import json
2
+ from tempfile import mktemp
3
+
4
 
5
  from huggingface_hub import duplicate_space, HfApi
6
 
 
63
  repo_id=project_space_repo_id,
64
  repo_type="space",
65
  )
66
+
67
+
68
+ def pull_seed_data_from_repo(repo_id, hub_token):
69
+ tempfile_path = mktemp()
70
+ # pull the dataset repo from the hub
71
+ hf_api.hf_hub_download(
72
+ repo_id=repo_id, token=hub_token, repo_type="dataset", filename=tempfile_path
73
+ )
74
+ return json.load(open(tempfile_path))
75
+
76
+
77
+ def push_pipeline_to_hub(
78
+ pipeline_path,
79
+ hub_username,
80
+ hub_token: str,
81
+ project_name,
82
+ ):
83
+ repo_id = f"{hub_username}/{project_name}"
84
+
85
+ # upload the pipeline to the hub
86
+ hf_api.upload_file(
87
+ path_or_fileobj=pipeline_path,
88
+ path_in_repo="pipeline.py",
89
+ token=hub_token,
90
+ repo_id=repo_id,
91
+ repo_type="dataset",
92
+ )
93
+
94
+ print(f"pipeline.py uploaded to {repo_id}")
pipeline.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from textwrap import dedent
3
+ from typing import Any, Dict, List
4
+
5
+ from distilabel.llms.huggingface import InferenceEndpointsLLM
6
+ from distilabel.pipeline import Pipeline
7
+ from distilabel.steps import TextGenerationToArgilla
8
+ from distilabel.steps.expand import ExpandColumns
9
+ from distilabel.steps.generators.data import LoadDataFromDicts
10
+ from distilabel.steps.tasks.self_instruct import SelfInstruct
11
+ from distilabel.steps.tasks.text_generation import TextGeneration
12
+ from distilabel.steps.tasks.typing import ChatType
13
+
14
+
15
+ ################################################################################
16
+ # Functions to create task prompts
17
+ ################################################################################
18
+
19
+
20
+ def create_application_instruction(domain: str, examples: List[Dict[str, str]]):
21
+ """Create the instruction for Self-Instruct task."""
22
+ system_prompt = dedent(
23
+ f"""You are an AI assistant than generates queries around the domain of {domain}.
24
+ Your should not expect basic but profound questions from your users.
25
+ The queries should reflect a diversxamity of vision and economic positions and political positions.
26
+ The queries may know about different methods of {domain}.
27
+ The queries can be positioned politically, economically, socially, or practically.
28
+ Also take into account the impact of diverse causes on diverse domains."""
29
+ )
30
+ for example in examples:
31
+ question = example["question"]
32
+ answer = example["answer"]
33
+ system_prompt += f"""\n- Question: {question}\n- Answer: {answer}\n"""
34
+
35
+
36
+ def create_seed_terms(topics: List[str], perspectives: List[str]) -> List[str]:
37
+ """Create seed terms for self intruct to start from."""
38
+
39
+ return [
40
+ f"{topic} from a {perspective} perspective"
41
+ for topic in topics
42
+ for perspective in perspectives
43
+ ]
44
+
45
+
46
+ ################################################################################
47
+ # Define out custom step for the domain expert
48
+ ################################################################################
49
+
50
+
51
+ class DomainExpert(TextGeneration):
52
+ """A customized task to generate text as a domain expert in the domain of farming and agriculture."""
53
+
54
+ system_prompt: str
55
+ template: str = """This is the the instruction: {instruction}"""
56
+
57
+ def format_input(self, input: Dict[str, Any]) -> "ChatType":
58
+ return [
59
+ {
60
+ "role": "system",
61
+ "content": self.system_prompt,
62
+ },
63
+ {
64
+ "role": "user",
65
+ "content": self.template.format(**input),
66
+ },
67
+ ]
68
+
69
+
70
+ ################################################################################
71
+ # Main script to run the pipeline
72
+ ################################################################################
73
+
74
+
75
+ if __name__ == "__main__":
76
+ import argparse
77
+ import json
78
+
79
+ parser = argparse.ArgumentParser(
80
+ description="Run the pipeline to generate domain-specific datasets."
81
+ )
82
+ parser.add_argument("--hub-token", type=str, help="The Hugging Face API token.")
83
+ parser.add_argument("--argilla-api-key", type=str, help="The Argilla API key.")
84
+ parser.add_argument("--argilla-api-url", type=str, help="The Argilla API URL.")
85
+ parser.add_argument(
86
+ "--argilla-dataset-name", type=str, help="The name of the dataset in Argilla."
87
+ )
88
+ parser.add_argument(
89
+ "--seed_data_path",
90
+ type=str,
91
+ help="The path to the seed data.",
92
+ default="seed_data.json",
93
+ )
94
+ parser.add_argument(
95
+ "--endpoint-base-url", type=str, help="The base URL of the inference endpoint."
96
+ )
97
+
98
+ args = parser.parse_args()
99
+
100
+ # collect our seed data
101
+
102
+ with open(args.seed_data_path, "r") as f:
103
+ seed_data = json.load(f)
104
+
105
+ topics = seed_data.get("topics", [])
106
+ perspectives = seed_data.get("perspectives", [])
107
+ domain_expert_prompt = seed_data.get("domain_expert_prompt", "")
108
+ examples = seed_data.get("examples", [])
109
+ domain_name = seed_data.get("domain_name", "domain")
110
+
111
+ # Define the task prompts
112
+
113
+ terms = create_seed_terms(topics=topics, perspectives=perspectives)
114
+ application_instruction = create_application_instruction(
115
+ domain=domain_name, examples=examples
116
+ )
117
+
118
+ # Define the distilabel pipeline
119
+
120
+ with Pipeline(domain_name) as pipeline:
121
+ load_data = LoadDataFromDicts(
122
+ name="load_data",
123
+ data=[{"input": term} for term in terms],
124
+ batch_size=64,
125
+ )
126
+
127
+ self_instruct = SelfInstruct(
128
+ name="self_instruct",
129
+ num_instructions=5,
130
+ input_batch_size=8,
131
+ llm=InferenceEndpointsLLM(
132
+ base_url=args.endpoint_base_url,
133
+ api_key=args.hub_token,
134
+ ),
135
+ )
136
+
137
+ expand_instructions = ExpandColumns(
138
+ name="expand_columns", columns={"instructions": "instruction"}
139
+ )
140
+
141
+ domain_expert = DomainExpert(
142
+ name="domain_expert",
143
+ llm=InferenceEndpointsLLM(
144
+ base_url=args.endpoint_base_url,
145
+ api_key=args.hub_token,
146
+ ),
147
+ input_batch_size=8,
148
+ system_prompt=domain_expert_prompt,
149
+ )
150
+
151
+ to_argilla = TextGenerationToArgilla(
152
+ name="text_generation_to_argilla",
153
+ dataset_name=args.argilla_dataset_name,
154
+ dataset_workspace="admin",
155
+ api_url=args.argilla_api_url,
156
+ api_key=args.argilla_api_key,
157
+ )
158
+
159
+ # Connect up the pipeline
160
+
161
+ load_data.connect(self_instruct)
162
+ self_instruct.connect(expand_instructions)
163
+ expand_instructions.connect(domain_expert)
164
+ domain_expert.connect(to_argilla)
165
+
166
+ # Run the pipeline
167
+
168
+ pipeline.run(
169
+ parameters={
170
+ "self_instruct": {
171
+ "llm": {"api_key": args.hub_token, "base_url": args.endpoint_base_url}
172
+ },
173
+ "domain_expert": {
174
+ "llm": {"api_key": args.hub_token, "base_url": args.endpoint_base_url}
175
+ },
176
+ "text_generation_to_argilla": {
177
+ "dataset_name": args.argilla_dataset_name,
178
+ "api_key": args.argilla_api_key,
179
+ "api_url": args.argilla_api_url,
180
+ },
181
+ },
182
+ use_cache=False,
183
+ )
utils.py DELETED
@@ -1,33 +0,0 @@
1
- import streamlit as st
2
-
3
- from defaults import (
4
- ARGILLA_SPACE_REPO_ID,
5
- PROJECT_NAME,
6
- ARGILLA_URL,
7
- DIBT_PARENT_APP_URL,
8
- DATASET_URL,
9
- DATASET_REPO_ID,
10
- ARGILLA_SPACE_REPO_ID,
11
- )
12
-
13
-
14
- def project_sidebar():
15
- if PROJECT_NAME == "DEFAULT_DOMAIN":
16
- st.warning(
17
- "Please set up the project configuration in the parent app before proceeding."
18
- )
19
- st.stop()
20
-
21
- st.sidebar.subheader(f"A Data Growing Project in the domain of {PROJECT_NAME}")
22
- st.sidebar.markdown(
23
- """
24
- This space helps you create a dataset seed for building diverse domain-specific datasets for aligning models.
25
- """
26
- )
27
- st.sidebar.link_button(f"πŸ“š Dataset Repo", DATASET_URL)
28
- st.sidebar.link_button(f"πŸ€– Argilla Space", ARGILLA_URL)
29
- st.sidebar.divider()
30
- st.sidebar.link_button("πŸ§‘β€πŸŒΎ New Project", DIBT_PARENT_APP_URL)
31
- st.sidebar.link_button(
32
- "πŸ€— Get your Hub Token", "https://huggingface.co/settings/tokens"
33
- )