File size: 10,028 Bytes
ae81e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
Learnable linear attention feature map classes and functions
"""
import torch
import torch.nn as nn
import torch.nn.functional as F


def init_feature_map(name: str, mlp: nn.Module, **kwargs: dict):
    """
    Initialize feature map final activation for linear attention
    """
    return FeatureMap(activation_name=name, mlp=mlp, **kwargs)


def init_feature_map_act(name: str, fullspace: bool = True, **kwargs):
    """
    Initialize feature map final activation for linear attention
    """
    if name == 'softmax_dim' and fullspace:
        return SoftmaxDim(**kwargs)
    elif name == 'softmax_dim' and not fullspace:
        return SoftmaxDimHalfspace(**kwargs)
    elif name == 'exp_dim' and fullspace:
        return Exp(**kwargs)
    elif name == 'exp_dim' and not fullspace:
        return ExpHalfspace(**kwargs)
    elif name == 'pos_elu':
        return PosELU(**kwargs)
    elif name == 'relu':
        return ReLU(**kwargs)
    
    else:
        raise NotImplementedError


def init_learned_kernel(name: str, **kwargs: any):
    """
    Initialize feature map MLP for linear attention
    """
    if name == 'untied_head_einsum':
        return FeatureMapMLP(**kwargs)
    elif name == 'untied_head_adapter':
        return FeatureMapAdapter(**kwargs)
    else:
        raise NotImplementedError


class FeatureMap(nn.Module):
    """
    Final 'activation' of feature map. Can probably be combined with
    `FeatureMapMLP` below

    Full feature map is like f(xW + b)
    -> This is the `f` part
    """
    def __init__(self,
                 activation_name: str,
                 head_dim_idx: int = -1, 
                 eps: float = 1e-12, 
                 mlp: nn.Module = None,
                 fullspace: bool = True,):
        super().__init__()
        self.head_dim_idx = head_dim_idx     
        self.eps = eps
        self.mlp = mlp if mlp is not None else nn.Identity()
        self.activation = init_feature_map_act(activation_name, fullspace, eps=eps)
        
    def forward(self, x: torch.Tensor, *mlp_args: any, **mlp_kwargs: any):
        """
        Assume x.shape is (batch_size, n_heads, seq_len, head_dim)
        """
        return self.activation(self.mlp(x, *mlp_args, **mlp_kwargs), x)

    def q_map(self, *args: any, **kwargs: any):
        """
        Use for inference in case q and k feature maps differ
        """
        return self.forward(*args, **kwargs)

    def k_map(self, *args: any, **kwargs: any):
        """
        Use for inference in case q and k feature maps differ
        """
        return self.forward(*args, **kwargs)


# -----------------------
# Feature map activations
# -----------------------
class FeatureMapAct(nn.Module):
    """
    Base class for feature map activations
    """
    def __init__(self, eps: float = 1e-12):
        super().__init__()
        self.eps = eps

    def forward(self, x: torch.Tensor, *args: any, **kwargs: any):
        """
        x.shape is (batch_size, n_heads, seq_len, head_dim)
        """
        return x


class PosELU(FeatureMapAct):
    """
    1 + ELU activation as in https://arxiv.org/abs/2006.16236
    """
    def forward(self, x: torch.Tensor, *args: any, **kwargs: any):
        return (1 + F.elu(x)).clamp(min=self.eps)


class ReLU(FeatureMapAct):
    """
    ReLU activation as in https://arxiv.org/abs/2103.13076
    """
    def forward(self, x: torch.Tensor, *args: any, **kwargs: any):
        return F.relu(x).clamp(min=self.eps)


class SoftmaxDim(FeatureMapAct):
    """
    Softmax activation as in https://arxiv.org/abs/2402.04347
    """
    def forward(self, x: torch.Tensor, *args: any, **kwargs: any):
        return torch.cat([
            torch.softmax(x, dim=-1), torch.softmax(-x, dim=-1)
        ], dim=-1).clamp(min=self.eps)

                         
class SoftmaxDimHalfspace(FeatureMapAct):
    """
    Softmax activation as in https://arxiv.org/abs/2402.04347
    """
    def forward(self, x: torch.Tensor, *args: any, **kwargs: any):
        return torch.softmax(x, dim=-1).clamp(min=self.eps)


class Exp(FeatureMapAct):
    """
    Exp activation as in https://arxiv.org/abs/2402.04347
    """
    def forward(self, x: torch.Tensor, *args: any, **kwargs: any):
        x_max = torch.amax(x, dim=-1, keepdim=True)
        x_min = torch.amin(x, dim=-1, keepdim=True)
        return torch.cat([
            torch.exp(x - x_max), torch.exp(-x + x_min)
        ], dim=-1).clamp(min=self.eps)


class ExpHalfspace(FeatureMapAct):
    """
    Exp activation as in https://arxiv.org/abs/2402.04347
    """
    def forward(self, x: torch.Tensor, *args: any, **kwargs: any):
        x_max = torch.amax(x, dim=-1, keepdim=True)
        return torch.exp(x - x_max).clamp(min=self.eps)


# ----------------
# Feature map MLPs
# ----------------

class FeatureMapMLP(nn.Module):
    """
    Learnable MLP in feature map.
    
    Full feature map is like f(xW + b)
    -> This is the `W` and (optional) `b` part
    """
    def __init__(self, 
                 num_heads: int,
                 head_dim: int,     # input dim
                 feature_dim: int,  # output dim
                 dtype: torch.dtype,
                 device: torch.device,
                 skip_connection: bool = False,
                 bias: bool = False,
                 zero_init: bool = False,
                 normal_init: bool = False,):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.feature_dim = feature_dim
        self.dtype = dtype
        self.device = device
        self.skip_connection = skip_connection
        self.bias = bias
        self.zero_init = zero_init
        self.normal_init = normal_init
        self.init_weights_()

        if self.zero_init:  # Zero-out weights or set as identity post-initialization
            self.zero_init_with_skip_() if self.skip_connection else self.zero_init_()

        if self.normal_init:
            with torch.no_grad():
                nn.init.normal_(self.layer)
        
        if self.skip_connection:
            assertion_fail = f'If self.skip_connection we need self.head_dim == self.feature_dim but self.head_dim is {self.head_dim} != self.feature_dim is {self.feature_dim}'
            assert self.head_dim == self.feature_dim, assertion_fail

    def init_weights_(self):
        """
        Initialize (W)eights and (b)iases
        """
        self.layer = nn.Parameter(torch.zeros(
            (self.num_heads, self.head_dim, self.feature_dim),
            dtype=self.dtype, device=self.device,
        ))
        nn.init.kaiming_uniform_(self.layer)

        if self.bias:
            self.bias = nn.Parameter(torch.zeros(
                (1, self.num_heads, 1, 1),  # self.feature_dim),
                dtype=self.dtype, device=self.device,
            ))
            nn.init.kaiming_uniform_(self.bias)
        else:
            self.bias = 0.  # hack

    def zero_init_with_skip_(self):
        """
        Initialize weights to zero matrix if skip connection
        """
        with torch.no_grad():
            nn.init.zeros_(self.layer)

    def zero_init_(self):
        """
        Initialize weights to identity matrix if no skip connection
        """
        with torch.no_grad():
            for i in range(self.layer.shape[0]):
                try:
                    nn.init.eye_(self.layer[i])
                except RuntimeError:
                    with torch.no_grad():
                        dtype = self.layer[i].dtype
                        weight = torch.eye(*self.layer[i].shape,
                                           requires_grad=self.layer[i].requires_grad,
                                           device=self.layer[i].device)
                        self.layer[i] = weight.to(dtype=dtype)

    def forward(self, x: torch.Tensor):
        """
        Assume x.shape is (batch_size, num_heads, seq_len, head_dim)
        """
        _x = torch.einsum('hdf,bhld->bhlf', self.layer, x) + self.bias
        return x + _x if self.skip_connection else _x


class FeatureMapAdapter(FeatureMapMLP):
    """
    Learnable Feature map with bottleneck adapter
    as in https://arxiv.org/abs/1902.00751

    We don't use but could be fun to try
    """
    def __init__(self, hidden_dim: int, *args, **kwargs):
        kwargs['skip_connection'] = True
        kwargs['bias'] = True
        kwargs['zero_init'] = True
        self.hidden_dim = hidden_dim
        super().__init__(*args, **kwargs)
    
    def init_weights_(self):
        """
        Initialize (W)eights and (b)iases
        """
        kwargs = {'dtype': self.dtype, 'device': self.device}
        self.layer0 = nn.Parameter(
            torch.zeros((self.num_heads, self.head_dim, self.hidden_dim), **kwargs)
        )
        self.layer1 = nn.Parameter(
            torch.zeros((self.num_heads, self.hidden_dim, self.feature_dim), **kwargs)
        )
        nn.init.kaiming_uniform_(self.layer0)
        nn.init.kaiming_uniform_(self.layer1)

        self.bias0 = nn.Parameter(torch.zeros((1, self.num_heads, 1, self.hidden_dim), **kwargs))
        self.bias1 = nn.Parameter(torch.zeros((1, self.num_heads, 1, self.feature_dim), **kwargs))
        nn.init.kaiming_uniform_(self.bias0)
        nn.init.kaiming_uniform_(self.bias1)

    def zero_init_with_skip_(self):
        with torch.no_grad():
            nn.init.zeros_(self.layer0)
            nn.init.zeros_(self.layer1)
            nn.init.zeros_(self.bias0)
            nn.init.zeros_(self.bias1)

    def zero_init_(self):
        assert NotImplementedError

    def forward(self, x: torch.Tensor):
        """
        Assume x.shape is (batch_size, num_heads, seq_len, head_dim)
        -> Down-project, apply nonlinearity, up-project; add skip connection
        """
        _x = torch.einsum('hde,bhld->bhle', self.layer0, x) + self.bias0
        _x = F.relu(_x)
        _x = torch.einsum('hef,bhle->bhlf', self.layer1, _x) + self.bias1
        return x + _x if self.skip_connection else _x