File size: 10,805 Bytes
ae81e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
"""
Alternative way to load trained models for evaluation
"""
import copy
import sys
from os.path import join
from omegaconf import OmegaConf
import torch
from src.utils.logging import print_header, print_config, _format_arg
from .pretrained import get_pretrained_loader
from .peft import create_peft_config
from .load_model import load_and_convert_attns
from .convert_model import remove_base_attention, toggle_attention
# Helpers
def get_args_from_checkpoint(fname: str):
"""
Get arguments from checkpoint filename
"""
id_to_name = {
'lk': 'learned_kernel',
'tqk': 'tie_qk_kernels',
'tq': 'train_qk',
'lzi': 'lk_zero_init',
'lsc': 'lk_skip_connection',
'pmnop': 'pretrained_model_name_or_path',
}
id_to_type = {
'lk': str,
'tqk': bool,
'tq': bool,
'lzi': bool,
'lsc': bool,
'pmnop': str,
}
args = {v: None for k, v in id_to_name.items()}
args['run_name'] = ''
for id_val in fname.split('-'):
try:
_id, val = id_val.split('=')
if val[-len('_distill.pt'):] == '_distill.pt': # hardcode hack
val = val[:-len('_distill.pt')]
if _id in id_to_type:
_type = id_to_type[_id]
args[id_to_name[_id]] = _type(val)
except Exception:
pass
return OmegaConf.create(args)
def update_model_config_from_args(model_config, args):
"""Override default configs"""
# Overall attention distillation
for arg in ['learned_kernel', 'tie_qk_kernels', 'train_qk']:
argval = getattr(args, arg)
if argval is not None:
setattr(model_config['attention'], arg, argval)
args.run_name += f'-{_format_arg(arg)}={argval}'
# Learned kernel
for arg in ['lk_skip_connection', 'lk_zero_init']:
argval = getattr(args, arg)
if argval is not None:
setattr(model_config['attention']['learned_kernel_kwargs'],
arg[len('lk_'):], argval)
args.run_name += f'-{_format_arg(arg)}={argval}'
# Pretrained model
if args.pretrained_model_name_or_path is not None: # if specified
pmnop = args.pretrained_model_name_or_path
model_config.model.pretrained_model_name_or_path = pmnop
args.run_name += f'-pmnop={pmnop.split("/")[-1]}'
return model_config
def get_lm_eval_model(model_kwargs: dict, # model_loader.loading_kwargs
path_to_lm_eval_harness: str, # ../../lm-evaluation-harness
hedgehog_model: bool = False,
long_model: bool = False,
):
"""
Load model for evaluation using LM Evaluation Harness
"""
lm_kwargs = copy.deepcopy(model_kwargs)
lm_kwargs['pretrained'] = lm_kwargs['pretrained_model_name_or_path']
lm_kwargs['dtype'] = str(lm_kwargs['torch_dtype']).split('.')[-1]
del lm_kwargs['torch_dtype']
# lm_kwargs['use_cache'] = False
lm_kwargs['output_attentions'] = False
lm_kwargs['output_hidden_states'] = False
print('-> Loading as lm-evaluation-harness model')
if hedgehog_model:
if 'mistral' in lm_kwargs['pretrained']:
from lm_eval_harness.models import LolcatsMistralForCausalLM as ModelClass
else:
from lm_eval_harness.models import LolcatsLlamaForCausalLM as ModelClass
lm = ModelClass.create_from_arg_string('', lm_kwargs)
else:
sys.path.append(path_to_lm_eval_harness)
from lm_eval.models import get_model
lm = get_model('hf-causal-experimental').create_from_arg_string('', lm_kwargs)
return lm
def load_model_from_config(model_config_name: str,
config_dir: str = './configs',
lm_eval_model: bool = False,
path_to_lm_eval_harness: str = '/juice2/scr2/mzhang/projects/lm-evaluation-harness',
):
"""
Load model from a config file
"""
# Load model configs
model_config_path = join(config_dir, 'model', f'{model_config_name}.yaml')
model_config = OmegaConf.load(model_config_path)
model_loader = get_pretrained_loader(**model_config.model)
tokenizer = model_loader.load_tokenizer()
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = 'left'
if lm_eval_model: # Instantiate as lm_eval.base.LM object
lm = get_lm_eval_model(model_loader.loading_kwargs, path_to_lm_eval_harness)
model = lm.model
else:
model = model_loader.load()
model.eval()
if lm_eval_model:
lm.model = model
model = lm
return model, model_config, tokenizer
def load_model_from_checkpoint(attn_mlp_checkpoint_path: str = None,
finetune_checkpoint_path: str = None,
config_dir: str = './configs',
print_model: bool = False,
debug: bool = False,
lm_eval_model: bool = False,
path_to_lm_eval_harness: str = '/juice2/scr2/mzhang/projects/lm-evaluation-harness',
profile_model: bool = False,
):
"""
Load model architecture from a checkpoint path
-> attn_mlp_checkpoint_path should direct to checkpoint with learned MLPs
-> finetune_checkpoint_path should direct to checkpoint with all other parameters
-> Assumes checkpoint_path stings have names for model_config and finetune_configs
"""
# Load model configs
if attn_mlp_checkpoint_path is not None:
if len(attn_mlp_checkpoint_path.split('/')) == 4:
model_config = attn_mlp_checkpoint_path.split('/')[2]
else:
model_config = attn_mlp_checkpoint_path.split('/')[-1].split('-m=')[-1].split('-')[0]
model_config_path = join(config_dir, 'model', f'{model_config}.yaml')
model_config = OmegaConf.load(model_config_path)
args = get_args_from_checkpoint(attn_mlp_checkpoint_path.split('/')[-1])
model_config = update_model_config_from_args(model_config, args)
else:
if len(finetune_checkpoint_path.split('/')) == 4:
model_config = finetune_checkpoint_path.split('/')[2]
else:
model_config = finetune_checkpoint_path.split('/')[-1].split('-m=')[-1].split('-')[0]
model_config_path = join(config_dir, 'model', f'{model_config}.yaml')
model_config = OmegaConf.load(model_config_path)
if profile_model:
model_config['attention']['attention_type'] += '_profile'
if finetune_checkpoint_path is not None:
finetune_config = finetune_checkpoint_path.split('-f=')[-1].split('-')[0]
finetune_config_path = join(config_dir, 'experiment', f'{finetune_config}.yaml')
finetune_config = OmegaConf.load(finetune_config_path)
if debug:
print_header('-- Model Config --')
print_config(model_config)
try:
print_header('-- Finetune Config --')
print_config(finetune_config)
except NameError:
pass
# Get base model
model_loader = get_pretrained_loader(**model_config.model)
tokenizer = model_loader.load_tokenizer()
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = 'left'
if lm_eval_model and attn_mlp_checkpoint_path is not None:
lm = get_lm_eval_model(model_loader.loading_kwargs, path_to_lm_eval_harness,
hedgehog_model=True)
model = lm.model # Do this way because we call the larger object
elif lm_eval_model: # Instantiate as lm_eval.base.LM object
lm = get_lm_eval_model(model_loader.loading_kwargs, path_to_lm_eval_harness)
model = lm.model
elif attn_mlp_checkpoint_path is None:
model = model_loader.load()
else:
model = model_loader.load(model_type=model_config['attention']['attention_type'])
try:
model.state_chunk_len = model_config['attention']['state_chunk_len']
except KeyError:
pass
if attn_mlp_checkpoint_path is not None:
# Update and load attentions
model = load_and_convert_attns(model, model_config,
checkpoint_path=attn_mlp_checkpoint_path)[0]
if 'peft' in model_config['attention']: # Merge back q and k proj
model = model.merge_and_unload()
# Already removed in load_and_convert_attns
# model = remove_base_attention(model) # , model_config.attention)
model = toggle_attention(model, False)
if debug:
print_header('*** Model after attention converion ***')
print(model)
if finetune_checkpoint_path is not None:
# Update architecture with LoRAs
if finetune_config.finetune.method == 'lora':
model, _ = create_peft_config(model, finetune_config.finetune)
else:
for p in model.parameters():
p.requires_grad = True
# Load weights
state_dict = torch.load(finetune_checkpoint_path)['model_state_dict']
_keys = model.load_state_dict(state_dict, strict=False)
try:
assert len(_keys.unexpected_keys) == 0
print_header('*** All expected keys matched successfully ***')
except AssertionError:
print_header('*** Error: unexpected keys in checkpoint ***')
print('Unexpected keys:')
for k in _keys.unexpected_keys:
print(k)
if debug:
print_header('Missing keys:')
for k in _keys.missing_keys:
print(k)
print_header('Unexpected keys:')
for k in _keys.unexpected_keys:
print(k)
try:
# model = model.merge_and_unload()
print('-> Training attention:', model.model.layers[0].self_attn.train_attention)
except AttributeError as e:
print('Error at:', e)
_train_attn = model.model.model.layers[0].self_attn.train_attention
print(f"But it's ok, {type(model.model.model)} has attribute 'layers'")
print('-> Training attention:', _train_attn)
if print_model or debug: # Look at model
print_header('*** Model ***')
print(model)
print_header('*** Trainable Parameters ***')
for n, p in model.named_parameters():
if p.requires_grad:
print(f'βββ {n}.requires_grad: {p.requires_grad}')
model.eval()
if lm_eval_model:
lm.model = model
model = lm
return model, model_config, tokenizer
|