lolcats / src /model /pretrained.py
ariG23498's picture
ariG23498 HF staff
chore: adding lolcats configs scrc and src
ae81e0f
"""
Classes for loading pretrained models
"""
from os.path import join
from omegaconf import OmegaConf
import torch
import torch.nn as nn
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
# from transformers import BitsAndBytesConfig
from peft import prepare_model_for_kbit_training
def get_pretrained_loader(pretrained_model_name_or_path: str,
huggingface_token: str = None,
**model_kwargs: any):
"""
Return the appropriate loader for the pretrained model
"""
if 'lama' in pretrained_model_name_or_path: # Llama or llama
return PretrainedLlamaLoader(
pretrained_model_name_or_path=pretrained_model_name_or_path,
huggingface_token=huggingface_token,
**model_kwargs,
)
elif 'istral' in pretrained_model_name_or_path: # Mistral or mistral;
return PretrainedMistralLoader(
pretrained_model_name_or_path=pretrained_model_name_or_path,
huggingface_token=huggingface_token,
**model_kwargs,
)
else:
print(f'-> {pretrained_model_name_or_path} using default pretrained model loader')
return PretrainedModelLoader(
pretrained_model_name_or_path=pretrained_model_name_or_path,
huggingface_token=huggingface_token,
**model_kwargs,
)
class PretrainedModelLoader():
"""
Class for loading a pretrained model.
Example:
model_loader = PretrainedModelLoader(**model_kwargs)
model = model_loader.load()
"""
def __init__(self,
pretrained_model_name_or_path: str,
cache_dir: str = None,
return_dict: bool = True, # False
device_map: str = 'auto',
low_cpu_mem_usage: bool = True,
torch_dtype: str = 'bfloat16',
rope_theta: float = 10000.,
attn_implementation: str = 'sdpa', # eager
load_in_8bit: bool = False,
load_in_4bit: bool = False,
huggingface_token: str = None,
peft_id: str = None,
rope_scaling: dict = None,
**other_kwargs: any) -> None:
print(f'-> Using {attn_implementation} attention')
self.loading_kwargs = {
'pretrained_model_name_or_path': pretrained_model_name_or_path,
'cache_dir': cache_dir,
'return_dict': return_dict,
'load_in_8bit': load_in_8bit,
'load_in_4bit': load_in_4bit,
'device_map': device_map,
'low_cpu_mem_usage': low_cpu_mem_usage,
'torch_dtype': getattr(torch, torch_dtype),
'rope_theta': rope_theta,
'attn_implementation': attn_implementation,
}
if rope_scaling is not None: # Llama 3.1 patch
rope_scaling = OmegaConf.to_container(rope_scaling)
self.loading_kwargs['rope_scaling'] = rope_scaling
for k, v in other_kwargs.items():
self.loading_kwargs[k] = v
self.quantization = load_in_8bit or load_in_4bit
self.peft_id = peft_id
self.gradient_checkpointing = False
if huggingface_token is not None: # for gated models, e.g., Llama 3
self.loading_kwargs['token'] = huggingface_token
if self.quantization:
raise NotImplementedError
# bnb_config = BitsAndBytesConfig(
# load_in_8bit=load_in_8bit,
# load_in_4bit=load_in_4bit,
# bnb_4bit_compute_dtype=torch.bfloat16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
# )
# del self.loading_kwargs['load_in_8bit']
# del self.loading_kwargs['load_in_4bit']
# self.loading_kwargs['quantization_config'] = bnb_config
def load(self) -> nn.Module:
"""
Load pretrained model
"""
model = AutoModelForCausalLM.from_pretrained(**self.loading_kwargs)
if self.quantization:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=self.gradient_checkpointing,
gradient_checkpointing_kwargs={'use_reentrant': False},
)
return model
def load_tokenizer(self):
"""
Load pretrained tokenizer
"""
try:
return AutoTokenizer.from_pretrained(**self.loading_kwargs)
except Exception as e:
print("-> Error with `AutoTokenizer.from_pretrained(**self.loading_kwargs)`:", e)
print("-> Trying `LlamaTokenizer.from_pretrained(**self.loading_kwargs)`")
# MZ 6/1: Mistral-7B-Instruct-v0.3 in Transformers v4.36 doesn't work with the above
return LlamaTokenizer.from_pretrained(**self.loading_kwargs)
class PretrainedLlamaLoader(PretrainedModelLoader):
def load(self, model_type: str = None, ):
llama3_1 = float('.'.join(transformers.__version__.split('.')[:2])) > 4.42 # 'Meta-Llama-3.1' in self.loading_kwargs['pretrained_model_name_or_path']
if model_type is None:
from transformers import LlamaForCausalLM as model_class
elif 'lolcats_llama_sharded' in model_type:
from .modeling_llama_sharded import ShardedLolcatsLlamaForCausalLM as model_class
elif 'lolcats_long_llama' in model_type:
from .modeling_llama import LooooolcatsLlamaForCausalLM as model_class
elif 'lolcats_llama' in model_type:
from .modeling_llama import LolcatsLlamaForCausalLM as model_class
else:
if model_type == 'flash_attention_2':
self.loading_kwargs['attn_implementation'] = model_type
from transformers import AutoModelForCausalLM as model_class
print('-> Loading from AutoModelForCausalLM')
model = model_class.from_pretrained(**self.loading_kwargs)
if self.peft_id is not None:
from peft import PeftModel
print('-> Loading PEFT checkpoint')
model = PeftModel.from_pretrained(
model,
self.peft_id,
torch_dtype=self.loading_kwargs['torch_dtype'],
device_map='auto',
cache_dir=self.loading_kwargs['cache_dir']
).merge_and_unload()
if self.quantization:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=self.gradient_checkpointing,
gradient_checkpointing_kwargs={'use_reentrant': False},
)
return model
def load_tokenizer(self):
return AutoTokenizer.from_pretrained(**self.loading_kwargs)
class PretrainedMistralLoader(PretrainedModelLoader):
def load(self, model_type: str = None):
if model_type is None:
from transformers import MistralForCausalLM as model_class
elif 'lolcats_long_llama' in model_type:
from .modeling_mistral import LooooolcatsMistralForCausalLM as model_class
elif 'lolcats_llama' in model_type:
from .modeling_mistral import LolcatsMistralForCausalLM as model_class
else:
if model_type == 'flash_attention_2':
self.loading_kwargs['attn_implementation'] = model_type
from transformers import AutoModelForCausalLM as model_class
print('-> Loading from AutoModelForCausalLM')
model = model_class.from_pretrained(**self.loading_kwargs)
if self.peft_id is not None:
from peft import PeftModel
model = PeftModel.from_pretrained(
model,
self.peft_id,
torch_dtype=self.loading_kwargs['torch_dtype'],
device_map='auto',
cache_dir=self.loading_kwargs['cache_dir'],
).merge_and_unload()
if self.quantization:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=self.gradient_checkpointing,
gradient_checkpointing_kwargs={'use_reentrant': False},
)
return model