Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,12 +14,11 @@ model2 = load_model_from_hub("arsath-sm/face_classification_model2", "face_class
|
|
14 |
|
15 |
def preprocess_image(image):
|
16 |
img = tf.image.resize(image, (224, 224)) # Resize to match the input size of your models
|
17 |
-
img = tf.cast(img, tf.float32) / 255.0
|
18 |
-
return tf.expand_dims(img, 0)
|
19 |
|
20 |
def predict_image(image):
|
21 |
preprocessed_image = preprocess_image(image)
|
22 |
-
|
23 |
# Make predictions using both models
|
24 |
pred1 = model1.predict(preprocessed_image)[0][0]
|
25 |
pred2 = model2.predict(preprocessed_image)[0][0]
|
@@ -30,19 +29,19 @@ def predict_image(image):
|
|
30 |
result2 = "Real" if pred2 > 0.5 else "Fake"
|
31 |
confidence2 = pred2 if pred2 > 0.5 else 1 - pred2
|
32 |
|
33 |
-
return
|
34 |
-
"Model 1 (ResNet) Prediction
|
35 |
-
"Model 2 (Inception) Prediction
|
36 |
-
|
37 |
|
38 |
# Create the Gradio interface
|
39 |
iface = gr.Interface(
|
40 |
fn=predict_image,
|
41 |
inputs=gr.Image(),
|
42 |
-
outputs=
|
43 |
-
"Model 1 (ResNet) Prediction"
|
44 |
-
"Model 2 (Inception) Prediction"
|
45 |
-
|
46 |
title="Real vs AI-Generated Face Classification",
|
47 |
description="Upload an image to classify whether it's a real face or an AI-generated face using two different models: ResNet-style and Inception-style."
|
48 |
)
|
|
|
14 |
|
15 |
def preprocess_image(image):
|
16 |
img = tf.image.resize(image, (224, 224)) # Resize to match the input size of your models
|
17 |
+
img = tf.cast(img, tf.float32) / 255.0 # Normalize pixel values
|
18 |
+
return tf.expand_dims(img, 0) # Add batch dimension
|
19 |
|
20 |
def predict_image(image):
|
21 |
preprocessed_image = preprocess_image(image)
|
|
|
22 |
# Make predictions using both models
|
23 |
pred1 = model1.predict(preprocessed_image)[0][0]
|
24 |
pred2 = model2.predict(preprocessed_image)[0][0]
|
|
|
29 |
result2 = "Real" if pred2 > 0.5 else "Fake"
|
30 |
confidence2 = pred2 if pred2 > 0.5 else 1 - pred2
|
31 |
|
32 |
+
return (
|
33 |
+
f"Model 1 (ResNet) Prediction: {result1} (Confidence: {confidence1:.2f})",
|
34 |
+
f"Model 2 (Inception) Prediction: {result2} (Confidence: {confidence2:.2f})"
|
35 |
+
)
|
36 |
|
37 |
# Create the Gradio interface
|
38 |
iface = gr.Interface(
|
39 |
fn=predict_image,
|
40 |
inputs=gr.Image(),
|
41 |
+
outputs=[
|
42 |
+
gr.Textbox(label="Model 1 (ResNet) Prediction"),
|
43 |
+
gr.Textbox(label="Model 2 (Inception) Prediction")
|
44 |
+
],
|
45 |
title="Real vs AI-Generated Face Classification",
|
46 |
description="Upload an image to classify whether it's a real face or an AI-generated face using two different models: ResNet-style and Inception-style."
|
47 |
)
|