Spaces:
Running
Running
File size: 14,528 Bytes
8e71274 eb42e7a 8e71274 1b37f68 8e71274 ed9ad5e 1b37f68 8e71274 eb42e7a 8e71274 24c14af 8e71274 1b37f68 24c14af 1b37f68 24c14af 1b37f68 24c14af ed9ad5e 1b37f68 eb42e7a 1b37f68 24c14af 8022f91 24c14af 8022f91 24c14af 8022f91 24c14af 8022f91 24c14af 8e71274 ed9ad5e 8e71274 eb42e7a 8e71274 eb42e7a 8e71274 eb42e7a 8e71274 eb42e7a 8e71274 eb42e7a 8e71274 f14681d 8e71274 1b37f68 24c14af 1b37f68 8e71274 eb42e7a 8e71274 1b37f68 8e71274 1b37f68 8e71274 d8f4e8d eb42e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import datetime
import gradio as gr
import time
import uuid
import openai
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
import os
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader
from collections import deque
import re
from bs4 import BeautifulSoup
import requests
from urllib.parse import urlparse
import mimetypes
from pathlib import Path
import tiktoken
import gdown
from langchain.chat_models import ChatOpenAI
from langchain import OpenAI
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
from ibm_watson_machine_learning.foundation_models import Model
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
import genai
from genai.extensions.langchain import LangChainInterface
from genai.schemas import GenerateParams
# Regex pattern to match a URL
HTTP_URL_PATTERN = r'^http[s]*://.+'
mimetypes.init()
media_files = tuple([x for x in mimetypes.types_map if mimetypes.types_map[x].split('/')[0] in ['image', 'video', 'audio']])
filter_strings = ['/email-protection#']
def getOaiCreds(key):
key = key if key else 'Null'
return {'service': 'openai',
'oai_key' : key
}
def getBamCreds(key):
key = key if key else 'Null'
return {'service': 'bam',
'bam_creds' : genai.Credentials(key, api_endpoint='https://bam-api.res.ibm.com/v1')
}
def getWxCreds(key, p_id):
key = key if key else 'Null'
p_id = p_id if p_id else 'Null'
return {'service': 'watsonx',
'credentials' : {"url": "https://us-south.ml.cloud.ibm.com", "apikey": key },
'project_id': p_id
}
def getPersonalBotApiKey():
if os.getenv("OPENAI_API_KEY"):
return getOaiCreds(os.getenv("OPENAI_API_KEY"))
elif os.getenv("WX_API_KEY") and os.getenv("WX_PROJECT_ID"):
return getWxCreds(os.getenv("WX_API_KEY"), os.getenv("WX_PROJECT_ID"))
elif os.getenv("BAM_API_KEY"):
return getBamCreds(os.getenv("BAM_API_KEY"))
else:
return {}
def getOaiLlm(temp, modelNameDD, api_key_st):
modelName = modelNameDD.split('(')[0].strip()
# check if the input model is chat model or legacy model
try:
ChatOpenAI(openai_api_key=api_key_st['oai_key'], temperature=0,model_name=modelName,max_tokens=1).predict('')
llm = ChatOpenAI(openai_api_key=api_key_st['oai_key'], temperature=float(temp),model_name=modelName)
except:
OpenAI(openai_api_key=api_key_st['oai_key'], temperature=0,model_name=modelName,max_tokens=1).predict('')
llm = OpenAI(openai_api_key=api_key_st['oai_key'], temperature=float(temp),model_name=modelName)
return llm
MAX_NEW_TOKENS = 1024
TOP_K = None
TOP_P = 1
def getWxLlm(temp, modelNameDD, api_key_st):
modelName = modelNameDD.split('(')[0].strip()
wxModelParams = {
GenParams.DECODING_METHOD: DecodingMethods.SAMPLE,
GenParams.MAX_NEW_TOKENS: MAX_NEW_TOKENS,
GenParams.TEMPERATURE: float(temp),
GenParams.TOP_K: TOP_K,
GenParams.TOP_P: TOP_P
}
model = Model(
model_id=modelName,
params=wxModelParams,
credentials=api_key_st['credentials'], project_id=api_key_st['project_id'])
llm = WatsonxLLM(model=model)
return llm
def getBamLlm(temp, modelNameDD, api_key_st):
modelName = modelNameDD.split('(')[0].strip()
parameters = GenerateParams(decoding_method="sample", max_new_tokens=MAX_NEW_TOKENS, temperature=float(temp), top_k=TOP_K, top_p=TOP_P)
llm = LangChainInterface(model=modelName, params=parameters, credentials=api_key_st['bam_creds'])
return llm
def get_hyperlinks(url):
try:
reqs = requests.get(url)
if not reqs.headers.get('Content-Type').startswith("text/html") or 400<=reqs.status_code<600:
return []
soup = BeautifulSoup(reqs.text, 'html.parser')
except Exception as e:
print(e)
return []
hyperlinks = []
for link in soup.find_all('a', href=True):
hyperlinks.append(link.get('href'))
return hyperlinks
# Function to get the hyperlinks from a URL that are within the same domain
def get_domain_hyperlinks(local_domain, url):
clean_links = []
for link in set(get_hyperlinks(url)):
clean_link = None
# If the link is a URL, check if it is within the same domain
if re.search(HTTP_URL_PATTERN, link):
# Parse the URL and check if the domain is the same
url_obj = urlparse(link)
if url_obj.netloc.replace('www.','') == local_domain.replace('www.',''):
clean_link = link
# If the link is not a URL, check if it is a relative link
else:
if link.startswith("/"):
link = link[1:]
elif link.startswith(("#", '?', 'mailto:')):
continue
if 'wp-content/uploads' in url:
clean_link = url+ "/" + link
else:
clean_link = "https://" + local_domain + "/" + link
if clean_link is not None:
clean_link = clean_link.strip().rstrip('/').replace('/../', '/')
if not any(x in clean_link for x in filter_strings):
clean_links.append(clean_link)
# Return the list of hyperlinks that are within the same domain
return list(set(clean_links))
# this function will get you a list of all the URLs from the base URL
def crawl(url, local_domain, prog=None):
# Create a queue to store the URLs to crawl
queue = deque([url])
# Create a set to store the URLs that have already been seen (no duplicates)
seen = set([url])
# While the queue is not empty, continue crawling
while queue:
# Get the next URL from the queue
url_pop = queue.pop()
# Get the hyperlinks from the URL and add them to the queue
for link in get_domain_hyperlinks(local_domain, url_pop):
if link not in seen:
queue.append(link)
seen.add(link)
if len(seen)>=100:
return seen
if prog is not None: prog(1, desc=f'Crawling: {url_pop}')
return seen
def ingestURL(documents, url, crawling=True, prog=None):
url = url.rstrip('/')
# Parse the URL and get the domain
local_domain = urlparse(url).netloc
if not (local_domain and url.startswith('http')):
return documents
print('Loading URL', url)
if crawling:
# crawl to get other webpages from this URL
if prog is not None: prog(0, desc=f'Crawling: {url}')
links = crawl(url, local_domain, prog)
if prog is not None: prog(1, desc=f'Crawling: {url}')
else:
links = set([url])
# separate pdf and other links
c_links, pdf_links = [], []
for x in links:
if x.endswith('.pdf'):
pdf_links.append(x)
elif not x.endswith(media_files):
c_links.append(x)
# Clean links loader using WebBaseLoader
if prog is not None: prog(0.5, desc=f'Ingesting: {url}')
if c_links:
loader = WebBaseLoader(list(c_links))
documents.extend(loader.load())
# remote PDFs loader
for pdf_link in list(pdf_links):
loader = PyMuPDFLoader(pdf_link)
doc = loader.load()
for x in doc:
x.metadata['source'] = loader.source
documents.extend(doc)
return documents
def ingestFiles(documents, files_list, prog=None):
for fPath in files_list:
doc = None
if fPath.endswith('.pdf'):
doc = PyMuPDFLoader(fPath).load()
elif fPath.endswith('.txt') and not 'WhatsApp Chat with' in fPath:
doc = TextLoader(fPath).load()
elif fPath.endswith(('.doc', 'docx')):
doc = Docx2txtLoader(fPath).load()
elif 'WhatsApp Chat with' in fPath and fPath.endswith('.csv'): # Convert Whatsapp TXT files to CSV using https://whatstk.streamlit.app/
doc = WhatsAppChatLoader(fPath).load()
else:
pass
if doc is not None and doc[0].page_content:
if prog is not None: prog(0.9, desc='Loaded file: '+fPath.rsplit('/')[0])
print('Loaded file:', fPath)
documents.extend(doc)
return documents
def data_ingestion(inputDir=None, file_list=[], url_list=[], gDriveFolder='', prog=None):
documents = []
# Ingestion from Google Drive Folder
if gDriveFolder:
opFolder = './gDriveDocs/'
gdown.download_folder(url=gDriveFolder, output=opFolder, quiet=True)
files = [str(x) for x in Path(opFolder).glob('**/*')]
documents = ingestFiles(documents, files, prog)
# Ingestion from Input Directory
if inputDir is not None:
files = [str(x) for x in Path(inputDir).glob('**/*')]
documents = ingestFiles(documents, files, prog)
if file_list:
documents = ingestFiles(documents, file_list, prog)
# Ingestion from URLs - also try https://python.langchain.com/docs/integrations/document_loaders/recursive_url_loader
if url_list:
for url in url_list:
documents = ingestURL(documents, url, prog=prog)
# Cleanup documents
for x in documents:
if 'WhatsApp Chat with' not in x.metadata['source']:
x.page_content = x.page_content.strip().replace('\n', ' ').replace('\\n', ' ').replace(' ', ' ')
# print(f"Total number of documents: {len(documents)}")
return documents
def split_docs(documents):
# Splitting and Chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=250) # default chunk size of 4000 makes around 1k tokens per doc. with k=4, this means 4k tokens input to LLM.
docs = text_splitter.split_documents(documents)
return docs
def getSourcesFromMetadata(metadata, sourceOnly=True, sepFileUrl=True):
# metadata: list of metadata dict from all documents
setSrc = set()
for x in metadata:
metadataText = '' # we need to convert each metadata dict into a string format. This string will be added to a set
if x is not None:
# extract source first, and then extract all other items
source = x['source']
source = source.rsplit('/',1)[-1] if 'http' not in source else source
notSource = []
for k,v in x.items():
if v is not None and k!='source' and k in ['page']:
notSource.extend([f"{k}: {v}"])
metadataText = ', '.join([f'source: {source}'] + notSource) if sourceOnly==False else source
setSrc.add(metadataText)
if sepFileUrl:
src_files = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' not in x], key=str.casefold))]))
src_urls = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted([x for x in setSrc if 'http' in x], key=str.casefold))]))
src_files = 'Files:\n'+src_files if src_files else ''
src_urls = 'URLs:\n'+src_urls if src_urls else ''
newLineSep = '\n\n' if src_files and src_urls else ''
return src_files + newLineSep + src_urls , len(setSrc)
else:
src_docs = '\n'.join(([f"{i+1}) {x}" for i,x in enumerate(sorted(list(setSrc), key=str.casefold))]))
return src_docs, len(setSrc)
def getEmbeddingFunc(creds):
# OpenAI key used
if creds.get('service')=='openai':
embeddings = OpenAIEmbeddings(openai_api_key=creds.get('oai_key','Null'))
# WX key used
elif creds.get('service')=='watsonx' or creds.get('service')=='bam':
# testModel = Model(model_id=ModelTypes.FLAN_UL2, credentials=creds['credentials'], project_id=creds['project_id']) # test the API key
# del testModel
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # for now use OpenSource model for embedding as WX doesnt have any embedding model
else:
raise Exception('Error: Invalid or None Credentials')
return embeddings
def getVsDict(embeddingFunc, docs, vsDict={}):
# create chroma client if doesnt exist
if vsDict.get('chromaClient') is None:
vsDict['chromaDir'] = './vecstore/'+str(uuid.uuid1())
vsDict['chromaClient'] = Chroma(embedding_function=embeddingFunc, persist_directory=vsDict['chromaDir'])
# clear chroma client before adding new docs
if vsDict['chromaClient']._collection.count()>0:
vsDict['chromaClient'].delete(vsDict['chromaClient'].get()['ids'])
# add new docs to chroma client
vsDict['chromaClient'].add_documents(docs)
print('vectorstore count:',vsDict['chromaClient']._collection.count(), 'at', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
return vsDict
# used for Hardcoded documents only - not uploaded by user (userData_vecStore is separate function)
def localData_vecStore(embKey={}, inputDir=None, file_list=[], url_list=[], vsDict={}, gGrUrl=''):
documents = data_ingestion(inputDir, file_list, url_list, gGrUrl)
if not documents:
raise Exception('Error: No Documents Found')
docs = split_docs(documents)
# Embeddings
embeddings = getEmbeddingFunc(embKey)
# create chroma client if doesnt exist
vsDict_hd = getVsDict(embeddings, docs, vsDict)
# get sources from metadata
src_str = getSourcesFromMetadata(vsDict_hd['chromaClient'].get()['metadatas'])
src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0]
print(src_str)
return vsDict_hd
def num_tokens_from_string(string, encoding_name = "cl100k_base"):
"""Returns the number of tokens in a text string."""
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def changeModel(oldModel, newModel):
if oldModel:
warning = 'Credentials not found for '+oldModel+'. Using default model '+newModel
gr.Warning(warning)
time.sleep(1)
return newModel
|