File size: 3,939 Bytes
46a75d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
from glob import glob

from trainer import Trainer, TrainerArgs

from TTS.tts.configs.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits, VitsArgs, VitsAudioConfig
from TTS.tts.utils.languages import LanguageManager
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor

output_path = "/media/julian/Workdisk/train"

mailabs_path = "/home/julian/workspace/mailabs/**"
dataset_paths = glob(mailabs_path)
dataset_config = [
    BaseDatasetConfig(
        formatter="mailabs",
        meta_file_train=None,
        path=path,
        language=path.split("/")[-1],  # language code is the folder name
    )
    for path in dataset_paths
]

audio_config = VitsAudioConfig(
    sample_rate=16000,
    win_length=1024,
    hop_length=256,
    num_mels=80,
    mel_fmin=0,
    mel_fmax=None,
)

vitsArgs = VitsArgs(
    use_language_embedding=True,
    embedded_language_dim=4,
    use_speaker_embedding=True,
    use_sdp=False,
)

config = VitsConfig(
    model_args=vitsArgs,
    audio=audio_config,
    run_name="vits_vctk",
    use_speaker_embedding=True,
    batch_size=32,
    eval_batch_size=16,
    batch_group_size=0,
    num_loader_workers=12,
    num_eval_loader_workers=12,
    precompute_num_workers=12,
    run_eval=True,
    test_delay_epochs=-1,
    epochs=1000,
    text_cleaner="multilingual_cleaners",
    use_phonemes=True,
    phoneme_language=None,
    phonemizer="multi_phonemizer",
    phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
    compute_input_seq_cache=True,
    print_step=25,
    use_language_weighted_sampler=True,
    print_eval=False,
    mixed_precision=False,
    min_audio_len=audio_config.sample_rate,
    max_audio_len=audio_config.sample_rate * 10,
    output_path=output_path,
    datasets=dataset_config,
    test_sentences=[
        [
            "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
            "mary_ann",
            None,
            "en-us",
        ],
        [
            "Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.",
            "ezwa",
            None,
            "fr-fr",
        ],
        ["Ich finde, dieses Startup ist wirklich unglaublich.", "eva_k", None, "de-de"],
        ["Я думаю, что этот стартап действительно удивительный.", "nikolaev", None, "ru"],
    ],
)

# force the convertion of the custom characters to a config attribute
config.from_dict(config.to_dict())

# init audio processor
ap = AudioProcessor(**config.audio.to_dict())

# load training samples
train_samples, eval_samples = load_tts_samples(
    dataset_config,
    eval_split=True,
    eval_split_max_size=config.eval_split_max_size,
    eval_split_size=config.eval_split_size,
)

# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
config.model_args.num_speakers = speaker_manager.num_speakers

language_manager = LanguageManager(config=config)
config.model_args.num_languages = language_manager.num_languages

# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)

# init model
model = Vits(config, ap, tokenizer, speaker_manager, language_manager)

# init the trainer and 🚀
trainer = Trainer(
    TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
)
trainer.fit()