Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from trainer import Trainer, TrainerArgs | |
from TTS.config.shared_configs import BaseAudioConfig | |
from TTS.tts.configs.neuralhmm_tts_config import NeuralhmmTTSConfig | |
from TTS.tts.configs.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.neuralhmm_tts import NeuralhmmTTS | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio import AudioProcessor | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
# init configs | |
dataset_config = BaseDatasetConfig( | |
formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join("data", "LJSpeech-1.1/") | |
) | |
audio_config = BaseAudioConfig( | |
sample_rate=22050, | |
do_trim_silence=True, | |
trim_db=60.0, | |
signal_norm=False, | |
mel_fmin=0.0, | |
mel_fmax=8000, | |
spec_gain=1.0, | |
log_func="np.log", | |
ref_level_db=20, | |
preemphasis=0.0, | |
) | |
config = NeuralhmmTTSConfig( # This is the config that is saved for the future use | |
run_name="neuralhmmtts_ljspeech", | |
audio=audio_config, | |
batch_size=32, | |
eval_batch_size=16, | |
num_loader_workers=4, | |
num_eval_loader_workers=4, | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
text_cleaner="phoneme_cleaners", | |
use_phonemes=True, | |
phoneme_language="en-us", | |
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
precompute_num_workers=8, | |
mel_statistics_parameter_path=os.path.join(output_path, "lj_parameters.pt"), | |
force_generate_statistics=False, | |
print_step=1, | |
print_eval=True, | |
mixed_precision=True, | |
output_path=output_path, | |
datasets=[dataset_config], | |
) | |
# INITIALIZE THE AUDIO PROCESSOR | |
# Audio processor is used for feature extraction and audio I/O. | |
# It mainly serves to the dataloader and the training loggers. | |
ap = AudioProcessor.init_from_config(config) | |
# INITIALIZE THE TOKENIZER | |
# Tokenizer is used to convert text to sequences of token IDs. | |
# If characters are not defined in the config, default characters are passed to the config | |
tokenizer, config = TTSTokenizer.init_from_config(config) | |
# LOAD DATA SAMPLES | |
# Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
# You can define your custom sample loader returning the list of samples. | |
# Or define your custom formatter and pass it to the `load_tts_samples`. | |
# Check `TTS.tts.datasets.load_tts_samples` for more details. | |
train_samples, eval_samples = load_tts_samples( | |
dataset_config, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# INITIALIZE THE MODEL | |
# Models take a config object and a speaker manager as input | |
# Config defines the details of the model like the number of layers, the size of the embedding, etc. | |
# Speaker manager is used by multi-speaker models. | |
model = NeuralhmmTTS(config, ap, tokenizer) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs(), | |
config, | |
output_path, | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
gpu=1, | |
) | |
trainer.fit() | |