Spaces:
Running
on
Zero
Running
on
Zero
import os | |
# Trainer: Where the ✨️ happens. | |
# TrainingArgs: Defines the set of arguments of the Trainer. | |
from trainer import Trainer, TrainerArgs | |
# GlowTTSConfig: all model related values for training, validating and testing. | |
from TTS.tts.configs.glow_tts_config import GlowTTSConfig | |
# BaseDatasetConfig: defines name, formatter and path of the dataset. | |
from TTS.tts.configs.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.glow_tts import GlowTTS | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio import AudioProcessor | |
from TTS.utils.downloaders import download_thorsten_de | |
# we use the same path as this script as our training folder. | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
# DEFINE DATASET CONFIG | |
# Set LJSpeech as our target dataset and define its path. | |
# You can also use a simple Dict to define the dataset and pass it to your custom formatter. | |
dataset_config = BaseDatasetConfig( | |
formatter="thorsten", meta_file_train="metadata.csv", path=os.path.join(output_path, "../thorsten-de/") | |
) | |
# download dataset if not already present | |
if not os.path.exists(dataset_config.path): | |
print("Downloading dataset") | |
download_thorsten_de(os.path.split(os.path.abspath(dataset_config.path))[0]) | |
# INITIALIZE THE TRAINING CONFIGURATION | |
# Configure the model. Every config class inherits the BaseTTSConfig. | |
config = GlowTTSConfig( | |
batch_size=32, | |
eval_batch_size=16, | |
num_loader_workers=4, | |
num_eval_loader_workers=4, | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
text_cleaner="phoneme_cleaners", | |
use_phonemes=True, | |
phoneme_language="de", | |
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
print_step=25, | |
print_eval=False, | |
mixed_precision=True, | |
test_sentences=[ | |
"Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", | |
"Sei eine Stimme, kein Echo.", | |
"Es tut mir Leid David. Das kann ich leider nicht machen.", | |
"Dieser Kuchen ist großartig. Er ist so lecker und feucht.", | |
"Vor dem 22. November 1963.", | |
], | |
output_path=output_path, | |
datasets=[dataset_config], | |
) | |
# INITIALIZE THE AUDIO PROCESSOR | |
# Audio processor is used for feature extraction and audio I/O. | |
# It mainly serves to the dataloader and the training loggers. | |
ap = AudioProcessor.init_from_config(config) | |
# INITIALIZE THE TOKENIZER | |
# Tokenizer is used to convert text to sequences of token IDs. | |
# If characters are not defined in the config, default characters are passed to the config | |
tokenizer, config = TTSTokenizer.init_from_config(config) | |
# LOAD DATA SAMPLES | |
# Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
# You can define your custom sample loader returning the list of samples. | |
# Or define your custom formatter and pass it to the `load_tts_samples`. | |
# Check `TTS.tts.datasets.load_tts_samples` for more details. | |
train_samples, eval_samples = load_tts_samples( | |
dataset_config, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# INITIALIZE THE MODEL | |
# Models take a config object and a speaker manager as input | |
# Config defines the details of the model like the number of layers, the size of the embedding, etc. | |
# Speaker manager is used by multi-speaker models. | |
model = GlowTTS(config, ap, tokenizer, speaker_manager=None) | |
# INITIALIZE THE TRAINER | |
# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, | |
# distributed training, etc. | |
trainer = Trainer( | |
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
) | |
# AND... 3,2,1... 🚀 | |
trainer.fit() | |