Spaces:
Runtime error
Runtime error
artintel235
commited on
Commit
β’
455762b
1
Parent(s):
627141f
added modified app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from peft import PeftModel, PeftConfig
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
device_map = {
|
6 |
+
"transformer.word_embeddings": 0,
|
7 |
+
"transformer.word_embeddings_layernorm": 0,
|
8 |
+
"lm_head": "cpu",
|
9 |
+
"transformer.h": 0,
|
10 |
+
"transformer.ln_f": 0,
|
11 |
+
}
|
12 |
+
|
13 |
+
# config = PeftConfig.from_pretrained("/content/llama-2-7b-medichat")
|
14 |
+
model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-chat-hf", return_dict=True, load_in_8bit=True, device_map=device_map)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf")
|
16 |
+
model = PeftModel.from_pretrained(model, "maxspin/medichat")
|
17 |
+
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
|
21 |
+
iface.launch()
|
22 |
+
|
23 |
+
def query_handling(query, conversation):
|
24 |
+
if "thanks" in query.lower() or "thank you" in query.lower() or "thank you very much" in query.lower():
|
25 |
+
conversation=""
|
26 |
+
return conversation
|
27 |
+
|
28 |
+
def process_response(input_string):
|
29 |
+
# Find the indices of the first [INST] and last [/INST]
|
30 |
+
start_index = input_string.find("[INST]")
|
31 |
+
end_index = input_string.rfind("[/INST]")
|
32 |
+
|
33 |
+
# If both [INST] and [/INST] are found
|
34 |
+
if start_index != -1 and end_index != -1:
|
35 |
+
# Extract the substring between [INST] and [/INST]
|
36 |
+
inst_substring = input_string[start_index:end_index + len("[/INST]")]
|
37 |
+
# Remove the extracted substring from the original string
|
38 |
+
cleaned_string = input_string.replace(inst_substring, "")
|
39 |
+
else:
|
40 |
+
# If [INST] or [/INST] is not found, keep the original string
|
41 |
+
cleaned_string = input_string
|
42 |
+
|
43 |
+
# Remove the special characters <s> and </s>
|
44 |
+
cleaned_string = cleaned_string.replace("<s>", "").replace("</s>", "").replace("[INST]","").replace("[/INST]","")
|
45 |
+
|
46 |
+
return cleaned_string
|
47 |
+
|
48 |
+
|
49 |
+
conversation=""
|
50 |
+
def predict(prompt):
|
51 |
+
global conversation
|
52 |
+
conversation = conversation+f"[INST]{prompt}[/INST]"
|
53 |
+
input_sequense = "<s>"+conversation
|
54 |
+
batch = tokenizer(f"{input_sequense}", return_tensors='pt')
|
55 |
+
batch = batch.to('cuda')
|
56 |
+
with torch.cuda.amp.autocast():
|
57 |
+
output_tokens = model.generate(**batch, max_new_tokens=4000)
|
58 |
+
response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
59 |
+
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
|
60 |
+
response = process_response(response)
|
61 |
+
conversation+=response
|
62 |
+
conversation = query_handling(prompt,conversation)
|
63 |
+
print(conversation)
|
64 |
+
return response
|
65 |
+
|
66 |
+
iface = gr.Interface(
|
67 |
+
fn=predict,
|
68 |
+
inputs="text", # Accepts a single text input
|
69 |
+
outputs="text" # Outputs a single text response
|
70 |
+
)
|