Arunachalam S commited on
Commit
d719f82
1 Parent(s): c6bd4ac

adding app

Browse files
Files changed (3) hide show
  1. app.py +48 -0
  2. model.joblib +3 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import joblib
3
+ import pandas as pd
4
+
5
+ st.title("Welcome to ABC Bank")
6
+
7
+ model = joblib.load('model.joblib')
8
+ #Even though we are not going to use gender to predict the loan status,
9
+ #we will be getting the gender data for future plans/schemes.
10
+ with st.form('Loan Form'):
11
+ col1,col2 = st.columns(2)
12
+ with col1:
13
+ Gender = st.selectbox('Gender',('Male','Female'))
14
+ Applicant_Income = st.number_input('Applicant Income',min_value=0)
15
+ Coapplicant_Income = st.number_input('Co-applicant Income',min_value=0)
16
+ Loan_amount = st.number_input('Loan Amount',min_value=0)
17
+ Loan_Amount_Term = st.number_input('Loan Amount Term (Months)',min_value=0)
18
+ with col2:
19
+ Property_Area = st.selectbox('Property Area',('Urban','Rural','Semiurban'))
20
+ Credit_History = st.number_input('Credit History',min_value=0,max_value=1)
21
+ Self_Employed = st.selectbox('Self Employed',('Yes','No'))
22
+ Dependents = st.selectbox('Dependents',('0','1','2','3','3+'))
23
+ Education = st.selectbox('Education',('Graduate','Not Graduate'))
24
+ Married = st.selectbox('Married',('Yes','No'))
25
+
26
+ df = pd.DataFrame({
27
+ 'Married': [Married],
28
+ 'Dependents': [Dependents],
29
+ 'Education': [Education],
30
+ 'Self_Employed': [Self_Employed],
31
+ 'Applicant_Income': [Applicant_Income],
32
+ 'Coapplicant_Income': [Coapplicant_Income],
33
+ 'Loan_Amount': [Loan_amount],
34
+ 'Loan_Amount_Term': [Loan_Amount_Term],
35
+ 'Credit_History': [Credit_History],
36
+ 'Property_Area': [Property_Area]}
37
+ )
38
+ submit = st.form_submit_button('Predict')
39
+ if submit:
40
+ prediction = model.predict(df)
41
+ if prediction:
42
+ st.success('Congratulations, Your Home Loan is Approved!!')
43
+ else:
44
+ st.error('We are extremely sorry to inform you that you Home Loan is not approved. Please reach out to nearest Branch for further clarification')
45
+
46
+ st.write(df)
47
+
48
+
model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7167812dfb03f255d78695e8936eead9bd5fb0790ff99d819401ef85537b2a64
3
+ size 5518
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit==1.12.0
2
+ pandas==2.0.3
3
+ scikit-learn==1.2.2
4
+ joblib==1.3.2