File size: 1,344 Bytes
2d57f1d
1491886
2d57f1d
 
1491886
8d419d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491886
2d57f1d
 
 
 
 
1491886
2d57f1d
e7f42e5
2d57f1d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
from gradio_client import Client, handle_file

def predict_depth(image):
    client = Client("prs-eth/marigold")
    try:
        # Full parameter set assuming all are required
        result = client.predict(
            handle_file(image),
            1,  # Ensemble size
            10,  # Number of denoising steps
            "0",  # Processing resolution
            handle_file('https://example.com/sample_file.pdf'),  # Placeholder URL for required file inputs
            handle_file('https://example.com/sample_file.pdf'),
            handle_file('https://example.com/sample_file.pdf'),
            0.5,  # Relative near plane position
            0.9,  # Relative far plane position
            10,  # Embossing level
            2,  # Smoothing filter size
            -50,  # Near plane offset
            api_name="/submit_depth_fn"
        )
        if result and result[0]:
            return result[0]
    except Exception as e:
        return f"An error occurred: {str(e)}"

    return "No depth output available"

# Gradio Interface
iface = gr.Interface(
    fn=predict_depth,
    inputs=gr.Image(type='filepath', label="Upload your image"),
    outputs=gr.File(label="Download Depth Map"),
    title="Depth Map Generator",
    description="Upload an image to receive a depth map file."
)

iface.launch()