ExplaiNER / src /data.py
Alexander Seifert
add randomize_sample option
bb162b6
raw
history blame
7.8 kB
from functools import partial
import pandas as pd
import streamlit as st
import torch
from datasets import Dataset, DatasetDict, load_dataset # type: ignore
from torch.nn.functional import cross_entropy
from transformers import DataCollatorForTokenClassification # type: ignore
from src.utils import device, tokenizer_hash_funcs
@st.cache(allow_output_mutation=True)
def get_data(
ds_name: str, config_name: str, split_name: str, split_sample_size: int, randomize_sample: bool
) -> Dataset:
"""Loads a Dataset from the HuggingFace hub (if not already loaded).
Uses `datasets.load_dataset` to load the dataset (see its documentation for additional details).
Args:
ds_name (str): Path or name of the dataset.
config_name (str): Name of the dataset configuration.
split_name (str): Which split of the data to load.
split_sample_size (int): The number of examples to load from the split.
Returns:
Dataset: A Dataset object.
"""
ds: DatasetDict = load_dataset(ds_name, name=config_name, use_auth_token=True).shuffle(
seed=0 if randomize_sample else None
) # type: ignore
split = ds[split_name].select(range(split_sample_size))
return split
@st.cache(
allow_output_mutation=True,
hash_funcs=tokenizer_hash_funcs,
)
def get_collator(tokenizer) -> DataCollatorForTokenClassification:
"""Returns a DataCollator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([PreTrainedTokenizer] or [PreTrainedTokenizerFast]): The tokenizer used for encoding the data.
Returns:
DataCollatorForTokenClassification: The DataCollatorForTokenClassification object.
"""
return DataCollatorForTokenClassification(tokenizer)
def create_word_ids_from_input_ids(tokenizer, input_ids: list[int]) -> list[int]:
"""Takes a list of input_ids and return corresponding word_ids
Args:
tokenizer: The tokenizer that was used to obtain the input ids.
input_ids (list[int]): List of token ids.
Returns:
list[int]: Word ids corresponding to the input ids.
"""
word_ids = []
wid = -1
tokens = [tokenizer.convert_ids_to_tokens(i) for i in input_ids]
for i, tok in enumerate(tokens):
if tok in tokenizer.all_special_tokens:
word_ids.append(-1)
continue
if not tokens[i - 1].endswith("@@") and tokens[i - 1] != "<unk>":
wid += 1
word_ids.append(wid)
assert len(word_ids) == len(input_ids)
return word_ids
def tokenize(batch, tokenizer) -> dict:
"""Tokenizes a batch of examples.
Args:
batch: The examples to tokenize
tokenizer: The tokenizer to use
Returns:
dict: The tokenized batch
"""
tokenized_inputs = tokenizer(batch["tokens"], truncation=True, is_split_into_words=True)
labels = []
wids = []
for idx, label in enumerate(batch["ner_tags"]):
try:
word_ids = tokenized_inputs.word_ids(batch_index=idx)
except ValueError:
word_ids = create_word_ids_from_input_ids(
tokenizer, tokenized_inputs["input_ids"][idx]
)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
if word_idx == -1 or word_idx is None or word_idx == previous_word_idx:
label_ids.append(-100)
else:
label_ids.append(label[word_idx])
previous_word_idx = word_idx
wids.append(word_ids)
labels.append(label_ids)
tokenized_inputs["word_ids"] = wids
tokenized_inputs["labels"] = labels
return tokenized_inputs
def stringify_ner_tags(batch: dict, tags) -> dict:
"""Stringifies a dataset batch's NER tags."""
return {"ner_tags_str": [tags.int2str(idx) for idx in batch["ner_tags"]]}
def encode_dataset(split: Dataset, tokenizer):
"""Encodes a dataset split.
Args:
split (Dataset): A Dataset object.
tokenizer: A PreTrainedTokenizer object.
Returns:
Dataset: A Dataset object with the encoded inputs.
"""
tags = split.features["ner_tags"].feature
split = split.map(partial(stringify_ner_tags, tags=tags), batched=True)
remove_columns = split.column_names
ids = split["id"]
split = split.map(
partial(tokenize, tokenizer=tokenizer),
batched=True,
remove_columns=remove_columns,
)
word_ids = [[id if id is not None else -1 for id in wids] for wids in split["word_ids"]]
return split.remove_columns(["word_ids"]), word_ids, ids
def forward_pass_with_label(batch, model, collator, num_classes: int) -> dict:
"""Runs the forward pass for a batch of examples.
Args:
batch: The batch to process
model: The model to process the batch with
collator: A data collator
num_classes (int): Number of classes
Returns:
dict: a dictionary containing `losses`, `preds` and `hidden_states`
"""
# Convert dict of lists to list of dicts suitable for data collator
features = [dict(zip(batch, t)) for t in zip(*batch.values())]
# Pad inputs and labels and put all tensors on device
batch = collator(features)
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
with torch.no_grad():
# Pass data through model
output = model(input_ids, attention_mask, output_hidden_states=True)
# logit.size: [batch_size, sequence_length, classes]
# Predict class with largest logit value on classes axis
preds = torch.argmax(output.logits, axis=-1).cpu().numpy() # type: ignore
# Calculate loss per token after flattening batch dimension with view
loss = cross_entropy(
output.logits.view(-1, num_classes), labels.view(-1), reduction="none"
)
# Unflatten batch dimension and convert to numpy array
loss = loss.view(len(input_ids), -1).cpu().numpy()
hidden_states = output.hidden_states[-1].cpu().numpy()
# logits = output.logits.view(len(input_ids), -1).cpu().numpy()
return {"losses": loss, "preds": preds, "hidden_states": hidden_states}
def predict(split_encoded: Dataset, model, tokenizer, collator, tags) -> pd.DataFrame:
"""Generates predictions for a given dataset split and returns the results as a dataframe.
Args:
split_encoded (Dataset): The dataset to process
model: The model to process the dataset with
tokenizer: The tokenizer to process the dataset with
collator: The data collator to use
tags: The tags used in the dataset
Returns:
pd.DataFrame: A dataframe containing token-level predictions.
"""
split_encoded = split_encoded.map(
partial(
forward_pass_with_label,
model=model,
collator=collator,
num_classes=tags.num_classes,
),
batched=True,
batch_size=8,
)
df: pd.DataFrame = split_encoded.to_pandas() # type: ignore
df["tokens"] = df["input_ids"].apply(
lambda x: tokenizer.convert_ids_to_tokens(x) # type: ignore
)
df["labels"] = df["labels"].apply(
lambda x: ["IGN" if i == -100 else tags.int2str(int(i)) for i in x]
)
df["preds"] = df["preds"].apply(lambda x: [model.config.id2label[i] for i in x])
df["preds"] = df.apply(lambda x: x["preds"][: len(x["input_ids"])], axis=1)
df["losses"] = df.apply(lambda x: x["losses"][: len(x["input_ids"])], axis=1)
df["hidden_states"] = df.apply(lambda x: x["hidden_states"][: len(x["input_ids"])], axis=1)
df["total_loss"] = df["losses"].apply(sum)
return df