Spaces:
Runtime error
Runtime error
File size: 14,065 Bytes
452467a 8ae5c89 452467a 5e3e8ef 8ae5c89 452467a 8ae5c89 452467a 8ae5c89 5e3e8ef 452467a 5e3e8ef 4751966 8ae5c89 eeb50b0 4751966 eeb50b0 a526070 4751966 149aab0 4751966 8ae5c89 4751966 8ae5c89 5e3e8ef 8ae5c89 452467a 8ae5c89 452467a 8ae5c89 4751966 8ae5c89 452467a 4751966 452467a 4751966 452467a 4751966 452467a 8ae5c89 452467a 8ae5c89 4751966 8ae5c89 4751966 8ae5c89 4751966 8ae5c89 c16febe 8ae5c89 4751966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import numpy as np
import streamlit as st
from constants import WHISPER_MODELS, language_dict
import streamlit as st
from utils import (
translate_to_english,
detect_language,
write,
read,
get_key,
)
import whisperx as whisper
import json
import pandas as pd
from pydub import AudioSegment
import os
import uuid
if "btn1" not in st.session_state:
st.session_state["btn1"] = False
if "btn2" not in st.session_state:
st.session_state["btn2"] = False
class ByteEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, bytes):
return obj.hex()
return json.JSONEncoder.default(self, obj)
def disable_btn2():
st.session_state["btn2"] = True
def disable_btn1():
st.session_state["btn1"] = True
st.set_page_config(page_title="Whisper-X", layout="wide")
import torch
if torch.cuda.is_available():
device = "gpu"
else:
device = "cpu"
input, output = st.columns(2, gap="medium")
with input:
st.header("Input")
audio_file = open("audio.wav", "rb")
audio_bytes = audio_file.read()
# st.markdown("""**sample audio**""", unsafe_allow_html=True)
st.audio(audio_bytes, format="audio/wav")
# st.markdown("""**your audio file**""", unsafe_allow_html=True)
audio_uploaded = st.file_uploader(
label="Upload your file",
type=["mp3", "wav"],
help="Your input file",
# on_change=disable_btn2,
# disabled=st.session_state["btn1"],
)
text_json = st.file_uploader(
label="Aligned JSON",
type=["json"],
help="Your aligned json file (Only if you need to skip transcribe)",
# disabled=st.session_state["btn2"],
# on_change=disable_btn1,
)
# text_json = None
# st.markdown("""**model**""", unsafe_allow_html=True)
model_name = st.selectbox(
label="Choose your model",
options=WHISPER_MODELS,
help="Choose a Whisper model.",
)
model_name = "base" if model_name == "" else model_name
# st.markdown("**transcription**", unsafe_allow_html=True)
transcription = st.selectbox(
"transcription",
options=["plain text", "srt", "vtt", "ass", "tsv"],
help="Choose the format for the transcription",
)
translate = st.checkbox(
"translate", help="Translate the text to English when set to True"
)
language = st.selectbox(
label="language",
options=list(language_dict.keys()) + list(language_dict.values()),
help="Translate the text to English when set to True",
)
patience = st.number_input(
label="patience",
step=0.01,
value=1.0,
help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search",
)
temperature = st.number_input(
label="temperature",
step=0.01,
value=1.0,
help="temperature to use for sampling",
)
suppress_tokens = st.text_input(
"suppress_tokens",
value="-1",
help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations",
)
initial_prompt = st.text_area(
label="initial_prompt",
help="optional text to provide as a prompt for the first window.",
)
condition_on_previous_text = st.checkbox(
"condition_on_previous_text",
help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop",
)
temperature_increment_on_fallback = st.number_input(
label="temperature_increment_on_fallback",
step=0.01,
value=0.2,
help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below",
)
compression_ratio_threshold = st.number_input(
label="compression_ratio_threshold",
value=2.4,
step=0.01,
help="if the gzip compression ratio is higher than this value, treat the decoding as failed",
)
logprob_threshold = st.number_input(
label="logprob_threshold",
value=-1.0,
step=0.01,
help="if the average log probability is lower than this value, treat the decoding as failed",
)
no_speech_threshold = st.number_input(
label="no_speech_threshold",
value=0.6,
step=0.01,
help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence",
)
if temperature_increment_on_fallback is not None:
temperature = tuple(
np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)
)
else:
temperature = [temperature]
submit = st.button("Submit", type="primary")
with output:
st.header("Output")
segments_pre = st.empty()
segments_post = st.empty()
segments_post_json = st.empty()
segments_post2 = st.empty()
trans = st.empty()
lang = st.empty()
name = str(uuid.uuid1())
if submit:
if audio_uploaded is None:
# st.audio(audio_bytes, format="audio/wav")
audio_uploaded = audio_file
if audio_uploaded is not None:
if audio_uploaded.name.endswith(".wav"):
temp = AudioSegment.from_wav(audio_uploaded)
temp.export(f"{name}.wav")
if audio_uploaded.name.endswith(".mp3"):
try:
temp = AudioSegment.from_file(audio_uploaded, format="mp3")
temp.export(f"{name}.wav")
except:
temp = AudioSegment.from_file(audio_uploaded, format="mp4")
temp.export(f"{name}.wav")
if language == "":
model = whisper.load_model(model_name)
with st.spinner("Detecting language..."):
detection = detect_language(f"{name}.wav", model)
language = detection.get("detected_language")
del model
if len(language) > 2:
language = get_key(language)
if text_json is None:
with st.spinner("Running ... "):
decode = {"suppress_tokens": suppress_tokens, "beam_size": 5}
model = whisper.load_model(model_name)
with st.container():
with st.spinner(f"Running with {model_name} model"):
result = model.transcribe(
f"{name}.wav",
language=language,
patience=patience,
initial_prompt=initial_prompt,
condition_on_previous_text=condition_on_previous_text,
temperature=temperature,
compression_ratio_threshold=compression_ratio_threshold,
logprob_threshold=logprob_threshold,
no_speech_threshold=no_speech_threshold,
**decode,
)
if translate:
result = translate_to_english(result, json=False)
with open("transcription.json", "w") as f:
json.dump(result["segments"], f, indent=4, cls=ByteEncoder)
with st.spinner("Running alignment model ..."):
model_a, metadata = whisper.load_align_model(
language_code=result["language"], device=device
)
result_aligned = whisper.align(
result["segments"],
model_a,
metadata,
f"{name}.wav",
device=device,
)
write(
f"{name}.wav",
dtype=transcription,
result_aligned=result_aligned,
)
trans_text = read(f"{name}.wav", transcription)
trans.text_area(
"transcription", trans_text, height=None, max_chars=None, key=None
)
char_segments = []
word_segments = []
for x in range(len(result_aligned["segments"])):
word_segments.append(
{
"word-segments": result_aligned["segments"][x][
"word-segments"
]
.fillna("")
.to_dict(orient="records")
}
)
char_segments.append(
{
"char-segments": result_aligned["segments"][x][
"char-segments"
]
.fillna("")
.to_dict(orient="records")
}
)
for x in range(len(result_aligned["segments"])):
result_aligned["segments"][x]["word-segments"] = word_segments[x]
result_aligned["segments"][x]["char-segments"] = char_segments[x]
segments_pre.text_area(
"Segments before alignment",
result["segments"],
height=None,
max_chars=None,
key=None,
)
segments_post.text_area(
"Word Segments after alignment",
result_aligned["word_segments"],
height=None,
max_chars=None,
key=None,
)
segments_post2.text_area(
"Segments after alignment",
result_aligned["segments"],
height=None,
max_chars=None,
key=None,
)
lang.text_input(
"detected language", language_dict.get(language), disabled=True
)
os.remove(f"{name}.wav")
if text_json is not None:
with st.spinner("Running ... "):
model = whisper.load_model(model_name)
json_filname = str(uuid.uuid1())
data = json.load(text_json)
# Close the uploaded file
text_json.close()
# Write the JSON data to a new file
with open(f"{json_filname}.json", "w") as outfile:
json.dump(data, outfile)
# with open("fold.json", "w", encoding="utf-8") as f:
# json.dump(text_json, f)
with open(f"{json_filname}.json", "r", encoding="utf-8") as f:
cont = json.load(f)
with st.spinner("Running alignment model ..."):
model_a, metadata = whisper.load_align_model(
language_code=language, device=device
)
result_aligned = whisper.align(
cont,
model_a,
metadata,
f"{name}.wav",
device=device,
)
words_segments = result_aligned["word_segments"]
write(
f"{name}.wav",
dtype=transcription,
result_aligned=result_aligned,
)
trans_text = read(f"{name}.wav", transcription)
char_segments = []
word_segments = []
for x in range(len(result_aligned["segments"])):
word_segments.append(
{
"word-segments": result_aligned["segments"][x][
"word-segments"
]
.fillna("")
.to_dict(orient="records")
}
)
char_segments.append(
{
"char-segments": result_aligned["segments"][x][
"char-segments"
]
.fillna("")
.to_dict(orient="records")
}
)
for x in range(len(result_aligned["segments"])):
result_aligned["segments"][x]["word-segments"] = word_segments[x]
result_aligned["segments"][x]["char-segments"] = char_segments[x]
trans.text_area(
"transcription", trans_text, height=None, max_chars=None, key=None
)
segments_pre.text_area(
"Segments before alignment",
cont,
height=None,
max_chars=None,
key=None,
)
segments_post.text_area(
"Word Segments after alignment",
result_aligned["word_segments"],
height=None,
max_chars=None,
key=None,
)
segments_post2.text_area(
"Segments after alignment",
result_aligned["segments"],
expanded=False,
height=None,
max_chars=None,
key=None,
)
lang.text_input(
"detected language", language_dict.get(language), disabled=True
)
os.remove(f"{name}.wav")
os.remove(f"{json_filname}.json") |