File size: 14,347 Bytes
452467a
 
 
 
8ae5c89
 
 
 
 
 
 
a526070
452467a
 
 
5e3e8ef
 
8ae5c89
452467a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae5c89
 
 
 
 
 
 
 
452467a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae5c89
 
 
 
 
 
 
5e3e8ef
 
452467a
 
 
 
 
5e3e8ef
 
eeb50b0
 
8ae5c89
eeb50b0
 
 
 
 
 
 
a526070
 
eeb50b0
 
a526070
 
 
 
 
149aab0
 
a526070
 
8ae5c89
 
 
eeb50b0
8ae5c89
 
 
 
5e3e8ef
8ae5c89
452467a
8ae5c89
 
452467a
8ae5c89
 
 
eeb50b0
8ae5c89
 
 
 
 
 
 
 
 
 
452467a
 
 
 
 
 
 
 
 
 
 
 
 
eeb50b0
452467a
 
 
eeb50b0
452467a
 
 
eeb50b0
452467a
 
 
8ae5c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452467a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae5c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb50b0
8ae5c89
 
 
 
eeb50b0
8ae5c89
 
 
eeb50b0
8ae5c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16febe
8ae5c89
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import numpy as np
import streamlit as st
from constants import WHISPER_MODELS, language_dict
import streamlit as st
from utils import (
    translate_to_english,
    detect_language,
    write,
    read,
    get_key,
)
import subprocess
import whisperx as whisper
import json
import pandas as pd
from pydub import AudioSegment
import os
import uuid

if "btn1" not in st.session_state:
    st.session_state["btn1"] = False
if "btn2" not in st.session_state:
    st.session_state["btn2"] = False


class ByteEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, bytes):
            return obj.hex()
        return json.JSONEncoder.default(self, obj)


def disable_btn2():
    st.session_state["btn2"] = True


def disable_btn1():
    st.session_state["btn1"] = True


st.set_page_config(page_title="Whisper-X", layout="wide")
import torch

if torch.cuda.is_available():
    device = "gpu"
else:
    device = "cpu"
input, output = st.columns(2, gap="medium")
with input:
    st.header("Input")
    audio_file = open("audio.wav", "rb")
    audio_bytes = audio_file.read()
    # st.markdown("""**sample audio**""", unsafe_allow_html=True)
    st.audio(audio_bytes, format="audio/wav")
    # st.markdown("""**your audio file**""", unsafe_allow_html=True)
    audio_uploaded = st.file_uploader(
        label="Upload your file",
        type=["mp3", "wav"],
        help="Your input file",
        # on_change=disable_btn2,
        # disabled=st.session_state["btn1"],
    )
    text_json = st.file_uploader(
        label="Aligned JSON",
        type=["json"],
        help="Your aligned json file (Only if you need to skip transcribe)",
        # disabled=st.session_state["btn2"],
        # on_change=disable_btn1,
    )
    # text_json = None

    # st.markdown("""**model**""", unsafe_allow_html=True)
    model_name = st.selectbox(
        label="Choose your model",
        options=WHISPER_MODELS,
        help="Choose a Whisper model.",
    )
    model_name = "base" if model_name == "" else model_name
    # st.markdown("**transcription**", unsafe_allow_html=True)
    transcription = st.selectbox(
        "transcription",
        options=["plain text", "srt", "vtt", "ass", "tsv"],
        help="Choose the format for the transcription",
    )
    translate = st.checkbox(
        "translate", help="Translate the text to English when set to True"
    )
    language = st.selectbox(
        label="language",
        options=list(language_dict.keys()) + list(language_dict.values()),
        help="Translate the text to English when set to True",
    )
    patience = st.number_input(
        label="patience",
        step=0.01,
        value=1.0,
        help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search",
    )
    temperature = st.number_input(
        label="temperature",
        step=0.01,
        value=1.0,
        help="temperature to use for sampling",
    )
    suppress_tokens = st.text_input(
        "suppress_tokens",
        value="-1",
        help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations",
    )
    initial_prompt = st.text_area(
        label="initial_prompt",
        help="optional text to provide as a prompt for the first window.",
    )
    condition_on_previous_text = st.checkbox(
        "condition_on_previous_text",
        help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop",
    )
    temperature_increment_on_fallback = st.number_input(
        label="temperature_increment_on_fallback",
        step=0.01,
        value=0.2,
        help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below",
    )
    compression_ratio_threshold = st.number_input(
        label="compression_ratio_threshold",
        value=2.4,
        step=0.01,
        help="if the gzip compression ratio is higher than this value, treat the decoding as failed",
    )
    logprob_threshold = st.number_input(
        label="logprob_threshold",
        value=-1.0,
        step=0.01,
        help="if the average log probability is lower than this value, treat the decoding as failed",
    )
    no_speech_threshold = st.number_input(
        label="no_speech_threshold",
        value=0.6,
        step=0.01,
        help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence",
    )
    if temperature_increment_on_fallback is not None:
        temperature = tuple(
            np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)
        )
    else:
        temperature = [temperature]
    submit = st.button("Submit", type="primary")
with output:
    st.header("Output")

    segments_pre = st.empty()
    segments_post = st.empty()
    segments_post_json = st.empty()
    segments_post2 = st.empty()
    trans = st.empty()
    lang = st.empty()

    name = str(uuid.uuid1())
    if submit:
        if audio_uploaded is None:
            # st.audio(audio_bytes, format="audio/wav")
            audio_uploaded = audio_file
        if audio_uploaded is not None:
            if audio_uploaded.name.endswith(".wav"):
                temp = AudioSegment.from_wav(audio_uploaded)
                input=f"{name}.wav"
                temp.export(input)
        if audio_uploaded.name.endswith(".mp3"):
            input=f"{name}.mp3"
            

            with open(input, "wb") as f:
                
                f.write(audio_uploaded.getbuffer())
            
            
            
            # subprocess.call(['ffmpeg', '-i', audio_uploaded.name,
            #        f'{name}.wav'])
            # try:

            #     temp = AudioSegment.from_file(audio_uploaded, format="mp3")
            #     temp.export(f"{name}.wav")
            # except:
                
                
            #     temp = AudioSegment.from_file(audio_uploaded, format="mp4")
            #     temp.export(f"{name}.wav")
        if language == "":
            model = whisper.load_model(model_name)
            with st.spinner("Detecting language..."):
                detection = detect_language(input, model)
                language = detection.get("detected_language")
                del model
        if len(language) > 2:
            language = get_key(language)

        if text_json is None:

            with st.spinner("Running ... "):
                decode = {"suppress_tokens": suppress_tokens, "beam_size": 5}
                model = whisper.load_model(model_name)
                with st.container():
                    with st.spinner(f"Running with {model_name} model"):
                        result = model.transcribe(
                            input,
                            language=language,
                            patience=patience,
                            initial_prompt=initial_prompt,
                            condition_on_previous_text=condition_on_previous_text,
                            temperature=temperature,
                            compression_ratio_threshold=compression_ratio_threshold,
                            logprob_threshold=logprob_threshold,
                            no_speech_threshold=no_speech_threshold,
                            **decode,
                        )

                if translate:
                    result = translate_to_english(result, json=False)
                with open("transcription.json", "w") as f:
                    json.dump(result["segments"], f, indent=4, cls=ByteEncoder)
                with st.spinner("Running alignment model ..."):
                    model_a, metadata = whisper.load_align_model(
                        language_code=result["language"], device=device
                    )
                    result_aligned = whisper.align(
                        result["segments"],
                        model_a,
                        metadata,
                        input,
                        device=device,
                    )
                write(
                    input,
                    dtype=transcription,
                    result_aligned=result_aligned,
                )
                trans_text = read(input, transcription)
                trans.text_area(
                    "transcription", trans_text, height=None, max_chars=None, key=None
                )
                char_segments = []
                word_segments = []

                for x in range(len(result_aligned["segments"])):
                    word_segments.append(
                        {
                            "word-segments": result_aligned["segments"][x][
                                "word-segments"
                            ]
                            .fillna("")
                            .to_dict(orient="records")
                        }
                    )
                    char_segments.append(
                        {
                            "char-segments": result_aligned["segments"][x][
                                "char-segments"
                            ]
                            .fillna("")
                            .to_dict(orient="records")
                        }
                    )

                for x in range(len(result_aligned["segments"])):

                    result_aligned["segments"][x]["word-segments"] = word_segments[x]
                    result_aligned["segments"][x]["char-segments"] = char_segments[x]
            segments_pre.text_area(
                "Segments before alignment",
                result["segments"],
                height=None,
                max_chars=None,
                key=None,
            )
            segments_post.text_area(
                "Word Segments after alignment",
                result_aligned["word_segments"],
                height=None,
                max_chars=None,
                key=None,
            )
            segments_post2.text_area(
                "Segments after alignment",
                result_aligned["segments"],
                height=None,
                max_chars=None,
                key=None,
            )
            lang.text_input(
                "detected language", language_dict.get(language), disabled=True
            )
            os.remove(f"{name}.wav")
        if text_json is not None:
            with st.spinner("Running ... "):

                model = whisper.load_model(model_name)
                json_filname = str(uuid.uuid1())
                data = json.load(text_json)

                # Close the uploaded file
                text_json.close()

                # Write the JSON data to a new file
                with open(f"{json_filname}.json", "w") as outfile:
                    json.dump(data, outfile)

                # with open("fold.json", "w", encoding="utf-8") as f:
                #     json.dump(text_json, f)
                with open(f"{json_filname}.json", "r", encoding="utf-8") as f:
                    cont = json.load(f)

                with st.spinner("Running alignment model ..."):
                    model_a, metadata = whisper.load_align_model(
                        language_code=language, device=device
                    )
                    result_aligned = whisper.align(
                        cont,
                        model_a,
                        metadata,
                        input,
                        device=device,
                    )
                words_segments = result_aligned["word_segments"]
                write(
                    input,
                    dtype=transcription,
                    result_aligned=result_aligned,
                )
                trans_text = read(input, transcription)
                char_segments = []
                word_segments = []

                for x in range(len(result_aligned["segments"])):
                    word_segments.append(
                        {
                            "word-segments": result_aligned["segments"][x][
                                "word-segments"
                            ]
                            .fillna("")
                            .to_dict(orient="records")
                        }
                    )
                    char_segments.append(
                        {
                            "char-segments": result_aligned["segments"][x][
                                "char-segments"
                            ]
                            .fillna("")
                            .to_dict(orient="records")
                        }
                    )

                for x in range(len(result_aligned["segments"])):

                    result_aligned["segments"][x]["word-segments"] = word_segments[x]
                    result_aligned["segments"][x]["char-segments"] = char_segments[x]
                trans.text_area(
                    "transcription", trans_text, height=None, max_chars=None, key=None
                )
                segments_pre.text_area(
                    "Segments before alignment",
                    cont,
                    height=None,
                    max_chars=None,
                    key=None,
                )

                segments_post.text_area(
                    "Word Segments after alignment",
                    result_aligned["word_segments"],
                    height=None,
                    max_chars=None,
                    key=None,
                )

                segments_post2.text_area(
                    "Segments after alignment",
                    result_aligned["segments"],
                    expanded=False,
                    height=None,
                    max_chars=None,
                    key=None,
                )
                lang.text_input(
                    "detected language", language_dict.get(language), disabled=True
                )
                os.remove(f"{name}.wav")
                os.remove(f"{json_filname}.json")