ashirhashmi commited on
Commit
32a82a5
1 Parent(s): 76355e6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """app.py"""
3
+
4
+ import streamlit as st
5
+ from transformers import pipeline, BartForConditionalGeneration, BartTokenizer
6
+
7
+ # Load pre-trained GPT-2 model and tokenizer
8
+ model_name = "gpt2"
9
+ model = GPT2LMHeadModel.from_pretrained(model_name)
10
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
11
+
12
+ model_name = "facebook/bart-large-cnn" # BART large model for summarization
13
+ model = BartForConditionalGeneration.from_pretrained(model_name)
14
+ tokenizer = BartTokenizer.from_pretrained(model_name)
15
+
16
+ # Define function to generate blog post
17
+ def generate_summary(topic):
18
+ input_text = f"{topic}"
19
+ inputs = tokenizer([input_text], max_length=1024, return_tensors='pt')
20
+
21
+ # Generate summary
22
+ summary_ids = model.generate(inputs['input_ids'], max_length=150, num_beams=4, length_penalty=2.0, early_stopping=True)
23
+
24
+ # Decode and return summary
25
+ generated_summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
26
+ return generated_summary
27
+
28
+
29
+ # Streamlit app
30
+ def main():
31
+ st.title("Summarization App")
32
+
33
+ # Sidebar input for topic
34
+ topic = st.sidebar.text_area("Enter text to summarize", "Enter your text here...")
35
+
36
+ # Generate button
37
+ if st.sidebar.button("Generate Summary"):
38
+ summary = generate_summary(topic)
39
+ st.subheader("Generated Summary:")
40
+ st.write(summary)
41
+
42
+
43
+ if __name__ == "__main__":
44
+ main()
45
+