Ashmi Banerjee
updated requirements
ad08564
from typing import Optional
import gradio as gr
from build_rag import get_context
from models.gemma import gemma_predict
from models.gemini import get_gemini_response
def clear():
return None, None, None
def generate_text(query_text, model_name: Optional[str] = "google/gemma-2b-it", tokens: Optional[int] = 1024,
temp: Optional[float] = 0.49):
combined_information = get_context(query_text)
gen_config = {
"temperature": temp,
"max_output_tokens": tokens,
}
if model_name is None or model_name == "google/gemma-2b-it":
return gemma_predict(combined_information, model_name, gen_config)
if model_name == "gemini-1.0-pro":
return get_gemini_response(combined_information, model_name, gen_config)
return "Sorry, something went wrong! Please try again."
examples = [["I'm planning a vacation to France. Can you suggest a one-week itinerary including must-visit places and "
"local cuisines to try?", "google/gemma-2b-it"],
["I want to explore off-the-beaten-path destinations in Europe, any suggestions?", "gemini-1.0-pro"],
["Suggest some cities that can be visited from London and are very rich in history and culture.",
"google/gemma-2b-it"],
]
with gr.Blocks() as demo:
gr.HTML("""<center><h1 style='font-size:xx-large;'>πŸ‡ͺπŸ‡Ί Euro City Recommender using Gemini & Gemma πŸ‡ͺπŸ‡Ί</h1><br><h3>Gemini
& Gemma Sprints 2024 submissions by Ashmi Banerjee. </h3></center> <br><p>We're testing the compatibility of
Retrieval Augmented Generation (RAG) implementations with Google's <b>Gemma-2b-it</b> & <b>Gemini 1.0 Pro</b>
models through HuggingFace and VertexAI, respectively, to generate travel recommendations. This early version (read
quick and dirty implementation) aims to see if functionalities work smoothly. It relies on Wikipedia abstracts
from 160 European cities to provide answers to your questions. Please be kind with it, as it's a work in progress!
</p> <br>Google Cloud credits are provided for this project. </p>
""")
with gr.Group():
query = gr.Textbox(label="Query", placeholder="Ask for your city recommendation here!")
model = gr.Dropdown(
["google/gemma-2b-it", "gemini-1.0-pro"], label="Model", info="Select your model. Will add more models "
"later!",
)
output = gr.Textbox(label="Generated Results", lines=4)
with gr.Accordion("Settings", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", value=1024, minimum=0, maximum=8192, step=64,
interactive=True,
visible=True, info="The maximum number of output tokens")
temperature = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.49,
interactive=True,
visible=True, info="The value used to module the logits distribution")
with gr.Group():
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
cancel_btn = gr.Button("Cancel", variant="stop")
submit_btn.click(generate_text, inputs=[query, model], outputs=[output])
clear_btn.click(clear, inputs=[], outputs=[query, model, output])
cancel_btn.click(clear, inputs=[], outputs=[query, model, output])
gr.Markdown("## Examples")
gr.Examples(
examples, inputs=[query, model], label="Examples", fn=generate_text, outputs=[output],
cache_examples=True,
)
if __name__ == "__main__":
demo.launch(show_api=False)