import argparse import glob import os.path import hashlib import time import datetime from pytz import timezone import gradio as gr import pickle import tqdm import json import TMIDIX from midi_to_colab_audio import midi_to_colab_audio import copy from collections import Counter import random import statistics import matplotlib.pyplot as plt #========================================================================================================== in_space = os.getenv("SYSTEM") == "spaces" #========================================================================================================== def render_midi(input_midi, render_type): print('*' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = time.time() print('=' * 70) print('Loading MIDI...') fn = os.path.basename(input_midi) fn1 = fn.split('.')[0] fdata = open(input_midi, 'rb').read() input_midi_md5hash = hashlib.md5(fdata).hexdigest() print('=' * 70) print('Input MIDI file name:', fn) print('Input MIDI md5 hash', input_midi_md5hash) print('Render type:', render_type) print('=' * 70) print('Processing MIDI...Please wait...') #======================================================= # START PROCESSING raw_score = TMIDIX.midi2single_track_ms_score(fdata, recalculate_channels=False) escore = TMIDIX.advanced_score_processor(raw_score, return_score_analysis=False, return_enhanced_score_notes=True)[0] first_note_index = raw_score[1].index(escore[0][:6]) for e in escore: e[1] = int(e[1] / 16) e[2] = int(e[2] / 16) # Sorting by patch, pitch, then by start-time escore.sort(key=lambda x: x[6]) escore.sort(key=lambda x: x[4], reverse=True) escore.sort(key=lambda x: x[1]) cscore = TMIDIX.chordify_score([1000, escore]) meta_data = raw_score[1][:first_note_index] + [escore[0]] + [escore[-1]] + [raw_score[1][-1]] print('Done!') print('=' * 70) print('Input MIDI metadata:', meta_data) print('=' * 70) print('Processing...Please wait...') if render_type == "Render as-is" or not render_type: output_score = copy.deepcopy(escore) elif render_type == "Extract melody": output_score = copy.deepcopy([c[0] for c in cscore if c[0][3] != 9]) for e in output_score: e[3] = 0 e[6] = 40 if e[4] < 60: e[4] = (e[4] % 12) + 60 print('Done processing!') print('=' * 70) print('Recalculating timings...') print('=' * 70) for e in output_score: e[1] = e[1] * 16 e[2] = e[2] * 16 print('Done recalculating timings!') print('=' * 70) print('Sample output events', output_score[:5]) print('=' * 70) print('Final processing...') new_fn = fn1+'.mid' patches = [-1] * 16 patches[9] = 9 for e in output_score: if e[3] != 9: if patches[e[3]] == -1: patches[e[3]] = e[6] else: if patches[e[3]] != e[6]: if -1 in patches: patches[patches.index(-1)] = e[6] else: patches[-1] = e[6] patches = [p if p != -1 else 0 for p in patches] detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, output_signature = 'Advanced MIDI Renderer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) audio = midi_to_colab_audio(new_fn, soundfont_path=soundfonts[0], sample_rate=16000, # 44100 volume_scale=10, output_for_gradio=True ) new_md5_hash = hashlib.md5(open(new_fn,'rb').read()).hexdigest() print('Done!') print('=' * 70) #======================================================== output_midi_md5 = str(new_md5_hash) output_midi_title = str(fn1) output_midi_summary = str(meta_data) output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(escore, plot_title=output_midi) print('Output MIDI file name:', output_midi) print('Output MIDI title:', output_midi_title) print('Output MIDI hash:', output_midi_md5) print('Output MIDI summary:', output_midi_summary) print('=' * 70) #======================================================== print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (time.time() - start_time), 'sec') print('*' * 70) #======================================================== yield output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot #========================================================================================================== if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true", default=False, help="share gradio app") parser.add_argument("--port", type=int, default=7860, help="gradio server port") opt = parser.parse_args() soundfonts = ["SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2", "Nice-Strings-PlusOrchestra-v1.6.sf2", "KBH-Real-Choir-V2.5.sf2"] app = gr.Blocks() with app: gr.Markdown("

Advanced MIDI Renderer

") gr.Markdown("

Transform and render any MIDI

") gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Renderer&style=flat)\n\n" "Los Angeles MIDI Dataset Demo\n\n" "Please see [Los Angeles MIDI Dataset](https://github.com/asigalov61/Los-Angeles-MIDI-Dataset) for more information and features\n\n" "[Open In Colab]" "(https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb)" " for all features\n\n" ) gr.Markdown("## Upload your MIDI") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="filepath") gr.Markdown("## Select desired render options") render_type = gr.Radio(["Render as-is", "Extract melody", "Transform"], label="Render type", value="Render as-is") submit = gr.Button() gr.Markdown("## Render results") output_midi_md5 = gr.Textbox(label="Output MIDI md5 hash") output_midi_title = gr.Textbox(label="Output MIDI title") output_midi_summary = gr.Textbox(label="Output MIDI summary") output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") output_plot = gr.Plot(label="Output MIDI score plot") output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) run_event = submit.click(render_midi, [input_midi, render_type], [output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) app.queue(1).launch(server_port=opt.port, share=opt.share, inbrowser=True)