File size: 5,603 Bytes
dcca7d2
 
 
 
 
 
 
 
afa00bd
dcca7d2
afa00bd
 
 
dcca7d2
 
 
 
 
 
 
 
 
 
 
 
 
 
afa00bd
 
dcca7d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import numpy as np
import time
import librosa
from pathlib import Path

import torch

from utilities import (create_folder, get_filename, RegressionPostProcessor, 
    write_events_to_midi)
from models import Regress_onset_offset_frame_velocity_CRNN, Note_pedal
from pytorch_utils import move_data_to_device, forward
import config


class PianoTranscription(object):
    def __init__(self, model_type='Note_pedal', checkpoint_path=None, 
        segment_samples=16000*10, device=torch.device('cuda')):
        """Class for transcribing piano solo recording.

        Args:
          model_type: str
          checkpoint_path: str
          segment_samples: int
          device: 'cuda' | 'cpu'
        """

        checkpoint_path="CRNN_note_F1%3D0.9677_pedal_F1%3D0.9186.pth"
        print('Checkpoint path: {}'.format(checkpoint_path))

        print('Using {} for inference.'.format(device))

        self.segment_samples = segment_samples
        self.frames_per_second = config.frames_per_second
        self.classes_num = config.classes_num
        self.onset_threshold = 0.3
        self.offset_threshod = 0.3
        self.frame_threshold = 0.1
        self.pedal_offset_threshold = 0.2

        # Build model
        Model = eval(model_type)
        self.model = Model(frames_per_second=self.frames_per_second, 
            classes_num=self.classes_num)

        # Load model
        checkpoint = torch.load(checkpoint_path, map_location=device)
        self.model.load_state_dict(checkpoint['model'], strict=False)

        # Parallel
        if 'cuda' in str(device):
            self.model.to(device)
            print('GPU number: {}'.format(torch.cuda.device_count()))
            self.model = torch.nn.DataParallel(self.model)
        else:
            print('Using CPU.')

    def transcribe(self, audio, midi_path):
        """Transcribe an audio recording.

        Args:
          audio: (audio_samples,)
          midi_path: str, path to write out the transcribed MIDI.

        Returns:
          transcribed_dict, dict: {'output_dict':, ..., 'est_note_events': ...}

        """
        audio = audio[None, :]  # (1, audio_samples)

        # Pad audio to be evenly divided by segment_samples
        audio_len = audio.shape[1]
        pad_len = int(np.ceil(audio_len / self.segment_samples))\
            * self.segment_samples - audio_len

        audio = np.concatenate((audio, np.zeros((1, pad_len))), axis=1)

        # Enframe to segments
        segments = self.enframe(audio, self.segment_samples)
        """(N, segment_samples)"""

        # Forward
        output_dict = forward(self.model, segments, batch_size=1)
        """{'reg_onset_output': (N, segment_frames, classes_num), ...}"""

        # Deframe to original length
        for key in output_dict.keys():
            output_dict[key] = self.deframe(output_dict[key])[0 : audio_len]
        """output_dict: {
          'reg_onset_output': (N, segment_frames, classes_num), 
          'reg_offset_output': (N, segment_frames, classes_num), 
          'frame_output': (N, segment_frames, classes_num), 
          'velocity_output': (N, segment_frames, classes_num)}"""

        # Post processor
        post_processor = RegressionPostProcessor(self.frames_per_second, 
            classes_num=self.classes_num, onset_threshold=self.onset_threshold, 
            offset_threshold=self.offset_threshod, 
            frame_threshold=self.frame_threshold, 
            pedal_offset_threshold=self.pedal_offset_threshold)

        # Post process output_dict to MIDI events
        (est_note_events, est_pedal_events) = \
            post_processor.output_dict_to_midi_events(output_dict)

        # Write MIDI events to file
        if midi_path:
            write_events_to_midi(start_time=0, note_events=est_note_events, 
                pedal_events=est_pedal_events, midi_path=midi_path)
            print('Write out to {}'.format(midi_path))

        transcribed_dict = {
            'output_dict': output_dict, 
            'est_note_events': est_note_events,
            'est_pedal_events': est_pedal_events}

        return transcribed_dict

    def enframe(self, x, segment_samples):
        """Enframe long sequence to short segments.

        Args:
          x: (1, audio_samples)
          segment_samples: int

        Returns:
          batch: (N, segment_samples)
        """
        assert x.shape[1] % segment_samples == 0
        batch = []

        pointer = 0
        while pointer + segment_samples <= x.shape[1]:
            batch.append(x[:, pointer : pointer + segment_samples])
            pointer += segment_samples // 2

        batch = np.concatenate(batch, axis=0)
        return batch

    def deframe(self, x):
        """Deframe predicted segments to original sequence.

        Args:
          x: (N, segment_frames, classes_num)

        Returns:
          y: (audio_frames, classes_num)
        """
        if x.shape[0] == 1:
            return x[0]

        else:
            x = x[:, 0 : -1, :]
            """Remove an extra frame in the end of each segment caused by the
            'center=True' argument when calculating spectrogram."""
            (N, segment_samples, classes_num) = x.shape
            assert segment_samples % 4 == 0

            y = []
            y.append(x[0, 0 : int(segment_samples * 0.75)])
            for i in range(1, N - 1):
                y.append(x[i, int(segment_samples * 0.25) : int(segment_samples * 0.75)])
            y.append(x[-1, int(segment_samples * 0.25) :])
            y = np.concatenate(y, axis=0)
            return y