asigalov61's picture
Update models.py
1b682a5 verified
import os
import sys
import math
import time
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
from pytorch_utils import move_data_to_device
def init_layer(layer):
"""Initialize a Linear or Convolutional layer. """
nn.init.xavier_uniform_(layer.weight)
if hasattr(layer, 'bias'):
if layer.bias is not None:
layer.bias.data.fill_(0.)
def init_bn(bn):
"""Initialize a Batchnorm layer. """
bn.bias.data.fill_(0.)
bn.weight.data.fill_(1.)
def init_gru(rnn):
"""Initialize a GRU layer. """
def _concat_init(tensor, init_funcs):
(length, fan_out) = tensor.shape
fan_in = length // len(init_funcs)
for (i, init_func) in enumerate(init_funcs):
init_func(tensor[i * fan_in : (i + 1) * fan_in, :])
def _inner_uniform(tensor):
fan_in = nn.init._calculate_correct_fan(tensor, 'fan_in')
nn.init.uniform_(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in))
for i in range(rnn.num_layers):
_concat_init(
getattr(rnn, 'weight_ih_l{}'.format(i)),
[_inner_uniform, _inner_uniform, _inner_uniform]
)
torch.nn.init.constant_(getattr(rnn, 'bias_ih_l{}'.format(i)), 0)
_concat_init(
getattr(rnn, 'weight_hh_l{}'.format(i)),
[_inner_uniform, _inner_uniform, nn.init.orthogonal_]
)
torch.nn.init.constant_(getattr(rnn, 'bias_hh_l{}'.format(i)), 0)
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, momentum):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
self.conv2 = nn.Conv2d(in_channels=out_channels,
out_channels=out_channels,
kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
self.bn1 = nn.BatchNorm2d(out_channels, momentum)
self.bn2 = nn.BatchNorm2d(out_channels, momentum)
self.init_weight()
def init_weight(self):
init_layer(self.conv1)
init_layer(self.conv2)
init_bn(self.bn1)
init_bn(self.bn2)
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
"""
Args:
input: (batch_size, in_channels, time_steps, freq_bins)
Outputs:
output: (batch_size, out_channels, classes_num)
"""
x = F.relu_(self.bn1(self.conv1(input)))
x = F.relu_(self.bn2(self.conv2(x)))
if pool_type == 'avg':
x = F.avg_pool2d(x, kernel_size=pool_size)
return x
class AcousticModelCRnn8Dropout(nn.Module):
def __init__(self, classes_num, midfeat, momentum):
super(AcousticModelCRnn8Dropout, self).__init__()
self.conv_block1 = ConvBlock(in_channels=1, out_channels=48, momentum=momentum)
self.conv_block2 = ConvBlock(in_channels=48, out_channels=64, momentum=momentum)
self.conv_block3 = ConvBlock(in_channels=64, out_channels=96, momentum=momentum)
self.conv_block4 = ConvBlock(in_channels=96, out_channels=128, momentum=momentum)
self.fc5 = nn.Linear(midfeat, 768, bias=False)
self.bn5 = nn.BatchNorm1d(768, momentum=momentum)
self.gru = nn.GRU(input_size=768, hidden_size=256, num_layers=2,
bias=True, batch_first=True, dropout=0., bidirectional=True)
self.fc = nn.Linear(512, classes_num, bias=True)
self.init_weight()
def init_weight(self):
init_layer(self.fc5)
init_bn(self.bn5)
init_gru(self.gru)
init_layer(self.fc)
def forward(self, input):
"""
Args:
input: (batch_size, channels_num, time_steps, freq_bins)
Outputs:
output: (batch_size, time_steps, classes_num)
"""
x = self.conv_block1(input, pool_size=(1, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block2(x, pool_size=(1, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block3(x, pool_size=(1, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block4(x, pool_size=(1, 2), pool_type='avg')
x = F.dropout(x, p=0.2, training=self.training)
x = x.transpose(1, 2).flatten(2)
x = F.relu(self.bn5(self.fc5(x).transpose(1, 2)).transpose(1, 2))
x = F.dropout(x, p=0.5, training=self.training, inplace=True)
(x, _) = self.gru(x)
x = F.dropout(x, p=0.5, training=self.training, inplace=False)
output = torch.sigmoid(self.fc(x))
return output
class Regress_onset_offset_frame_velocity_CRNN(nn.Module):
def __init__(self, frames_per_second, classes_num):
super(Regress_onset_offset_frame_velocity_CRNN, self).__init__()
sample_rate = 16000
window_size = 2048
hop_size = sample_rate // frames_per_second
mel_bins = 229
fmin = 30
fmax = sample_rate // 2
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
midfeat = 1792
momentum = 0.01
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(n_fft=window_size,
hop_length=hop_size, win_length=window_size, window=window,
center=center, pad_mode=pad_mode, freeze_parameters=True)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(sr=sample_rate,
n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref,
amin=amin, top_db=top_db, freeze_parameters=True)
self.bn0 = nn.BatchNorm2d(mel_bins, momentum)
self.frame_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum)
self.reg_onset_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum)
self.reg_offset_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum)
self.velocity_model = AcousticModelCRnn8Dropout(classes_num, midfeat, momentum)
self.reg_onset_gru = nn.GRU(input_size=88 * 2, hidden_size=256, num_layers=1,
bias=True, batch_first=True, dropout=0., bidirectional=True)
self.reg_onset_fc = nn.Linear(512, classes_num, bias=True)
self.frame_gru = nn.GRU(input_size=88 * 3, hidden_size=256, num_layers=1,
bias=True, batch_first=True, dropout=0., bidirectional=True)
self.frame_fc = nn.Linear(512, classes_num, bias=True)
self.init_weight()
def init_weight(self):
init_bn(self.bn0)
init_gru(self.reg_onset_gru)
init_gru(self.frame_gru)
init_layer(self.reg_onset_fc)
init_layer(self.frame_fc)
def forward(self, input):
"""
Args:
input: (batch_size, data_length)
Outputs:
output_dict: dict, {
'reg_onset_output': (batch_size, time_steps, classes_num),
'reg_offset_output': (batch_size, time_steps, classes_num),
'frame_output': (batch_size, time_steps, classes_num),
'velocity_output': (batch_size, time_steps, classes_num)
}
"""
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
frame_output = self.frame_model(x) # (batch_size, time_steps, classes_num)
reg_onset_output = self.reg_onset_model(x) # (batch_size, time_steps, classes_num)
reg_offset_output = self.reg_offset_model(x) # (batch_size, time_steps, classes_num)
velocity_output = self.velocity_model(x) # (batch_size, time_steps, classes_num)
# Use velocities to condition onset regression
x = torch.cat((reg_onset_output, (reg_onset_output ** 0.5) * velocity_output.detach()), dim=2)
(x, _) = self.reg_onset_gru(x)
x = F.dropout(x, p=0.5, training=self.training, inplace=False)
reg_onset_output = torch.sigmoid(self.reg_onset_fc(x))
"""(batch_size, time_steps, classes_num)"""
# Use onsets and offsets to condition frame-wise classification
x = torch.cat((frame_output, reg_onset_output.detach(), reg_offset_output.detach()), dim=2)
(x, _) = self.frame_gru(x)
x = F.dropout(x, p=0.5, training=self.training, inplace=False)
frame_output = torch.sigmoid(self.frame_fc(x)) # (batch_size, time_steps, classes_num)
"""(batch_size, time_steps, classes_num)"""
output_dict = {
'reg_onset_output': reg_onset_output,
'reg_offset_output': reg_offset_output,
'frame_output': frame_output,
'velocity_output': velocity_output}
return output_dict
class Regress_pedal_CRNN(nn.Module):
def __init__(self, frames_per_second, classes_num):
super(Regress_pedal_CRNN, self).__init__()
sample_rate = 16000
window_size = 2048
hop_size = sample_rate // frames_per_second
mel_bins = 229
fmin = 30
fmax = sample_rate // 2
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
midfeat = 1792
momentum = 0.01
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(n_fft=window_size,
hop_length=hop_size, win_length=window_size, window=window,
center=center, pad_mode=pad_mode, freeze_parameters=True)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(sr=sample_rate,
n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref,
amin=amin, top_db=top_db, freeze_parameters=True)
self.bn0 = nn.BatchNorm2d(mel_bins, momentum)
self.reg_pedal_onset_model = AcousticModelCRnn8Dropout(1, midfeat, momentum)
self.reg_pedal_offset_model = AcousticModelCRnn8Dropout(1, midfeat, momentum)
self.reg_pedal_frame_model = AcousticModelCRnn8Dropout(1, midfeat, momentum)
self.init_weight()
def init_weight(self):
init_bn(self.bn0)
def forward(self, input):
"""
Args:
input: (batch_size, data_length)
Outputs:
output_dict: dict, {
'reg_onset_output': (batch_size, time_steps, classes_num),
'reg_offset_output': (batch_size, time_steps, classes_num),
'frame_output': (batch_size, time_steps, classes_num),
'velocity_output': (batch_size, time_steps, classes_num)
}
"""
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
reg_pedal_onset_output = self.reg_pedal_onset_model(x) # (batch_size, time_steps, classes_num)
reg_pedal_offset_output = self.reg_pedal_offset_model(x) # (batch_size, time_steps, classes_num)
pedal_frame_output = self.reg_pedal_frame_model(x) # (batch_size, time_steps, classes_num)
output_dict = {
'reg_pedal_onset_output': reg_pedal_onset_output,
'reg_pedal_offset_output': reg_pedal_offset_output,
'pedal_frame_output': pedal_frame_output}
return output_dict
# This model is not trained, but is combined from the trained note and pedal models.
class Note_pedal(nn.Module):
def __init__(self, frames_per_second, classes_num):
"""The combination of note and pedal model.
"""
super(Note_pedal, self).__init__()
self.note_model = Regress_onset_offset_frame_velocity_CRNN(frames_per_second, classes_num)
self.pedal_model = Regress_pedal_CRNN(frames_per_second, classes_num)
def load_state_dict(self, m, strict=False):
self.note_model.load_state_dict(m['note_model'], strict=strict)
self.pedal_model.load_state_dict(m['pedal_model'], strict=strict)
def forward(self, input):
note_output_dict = self.note_model(input)
pedal_output_dict = self.pedal_model(input)
full_output_dict = {}
full_output_dict.update(note_output_dict)
full_output_dict.update(pedal_output_dict)
return full_output_dict