asigalov61
commited on
Commit
•
d26af00
1
Parent(s):
b7b4e7f
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
|
3 |
import time as reqtime
|
4 |
import datetime
|
@@ -23,15 +23,15 @@ in_space = os.getenv("SYSTEM") == "spaces"
|
|
23 |
# =================================================================================================
|
24 |
|
25 |
@spaces.GPU
|
26 |
-
def
|
27 |
print('=' * 70)
|
28 |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
29 |
start_time = reqtime.time()
|
30 |
|
31 |
print('Loading model...')
|
32 |
|
33 |
-
SEQ_LEN =
|
34 |
-
PAD_IDX =
|
35 |
DEVICE = 'cuda' # 'cuda'
|
36 |
|
37 |
# instantiate the model
|
@@ -39,7 +39,7 @@ def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type,
|
|
39 |
model = TransformerWrapper(
|
40 |
num_tokens = PAD_IDX+1,
|
41 |
max_seq_len = SEQ_LEN,
|
42 |
-
attn_layers = Decoder(dim =
|
43 |
)
|
44 |
|
45 |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
|
@@ -50,7 +50,7 @@ def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type,
|
|
50 |
print('Loading model checkpoint...')
|
51 |
|
52 |
model.load_state_dict(
|
53 |
-
torch.load('
|
54 |
map_location=DEVICE))
|
55 |
print('=' * 70)
|
56 |
|
@@ -59,145 +59,15 @@ def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type,
|
|
59 |
if DEVICE == 'cpu':
|
60 |
dtype = torch.bfloat16
|
61 |
else:
|
62 |
-
dtype = torch.
|
63 |
|
64 |
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
|
65 |
|
66 |
print('Done!')
|
67 |
print('=' * 70)
|
68 |
-
|
69 |
-
fn = os.path.basename(input_midi.name)
|
70 |
-
fn1 = fn.split('.')[0]
|
71 |
-
|
72 |
-
input_num_tokens = max(4, min(128, input_num_tokens))
|
73 |
-
|
74 |
-
print('-' * 70)
|
75 |
-
print('Input file name:', fn)
|
76 |
-
print('Req num toks:', input_num_tokens)
|
77 |
-
print('Conditioning type:', input_conditioning_type)
|
78 |
-
print('Strip notes:', input_strip_notes)
|
79 |
print('-' * 70)
|
80 |
|
81 |
-
#===============================================================================
|
82 |
-
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
83 |
-
|
84 |
-
#===============================================================================
|
85 |
-
# Enhanced score notes
|
86 |
-
|
87 |
-
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
|
88 |
-
|
89 |
-
no_drums_escore_notes = [e for e in escore_notes if e[6] < 80]
|
90 |
-
|
91 |
-
if len(no_drums_escore_notes) > 0:
|
92 |
-
|
93 |
-
#=======================================================
|
94 |
-
# PRE-PROCESSING
|
95 |
-
|
96 |
-
#===============================================================================
|
97 |
-
# Augmented enhanced score notes
|
98 |
-
|
99 |
-
no_drums_escore_notes = TMIDIX.augment_enhanced_score_notes(no_drums_escore_notes)
|
100 |
-
|
101 |
-
cscore = TMIDIX.chordify_score([1000, no_drums_escore_notes])
|
102 |
-
|
103 |
-
clean_cscore = []
|
104 |
-
|
105 |
-
for c in cscore:
|
106 |
-
pitches = []
|
107 |
-
cho = []
|
108 |
-
for cc in c:
|
109 |
-
if cc[4] not in pitches:
|
110 |
-
cho.append(cc)
|
111 |
-
pitches.append(cc[4])
|
112 |
-
|
113 |
-
clean_cscore.append(cho)
|
114 |
-
|
115 |
-
#=======================================================
|
116 |
-
# FINAL PROCESSING
|
117 |
-
|
118 |
-
melody_chords = []
|
119 |
-
chords = []
|
120 |
-
times = [0]
|
121 |
-
durs = []
|
122 |
-
|
123 |
-
#=======================================================
|
124 |
-
# MAIN PROCESSING CYCLE
|
125 |
-
#=======================================================
|
126 |
-
|
127 |
-
pe = clean_cscore[0][0]
|
128 |
-
|
129 |
-
first_chord = True
|
130 |
-
|
131 |
-
for c in clean_cscore:
|
132 |
-
|
133 |
-
# Chords
|
134 |
-
|
135 |
-
c.sort(key=lambda x: x[4], reverse=True)
|
136 |
-
|
137 |
-
tones_chord = sorted(set([cc[4] % 12 for cc in c]))
|
138 |
-
|
139 |
-
try:
|
140 |
-
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)
|
141 |
-
except:
|
142 |
-
checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord)
|
143 |
-
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(checked_tones_chord)
|
144 |
-
|
145 |
-
melody_chords.extend([chord_token+384])
|
146 |
-
|
147 |
-
if input_strip_notes:
|
148 |
-
if len(tones_chord) > 1:
|
149 |
-
chords.extend([chord_token+384])
|
150 |
-
|
151 |
-
else:
|
152 |
-
chords.extend([chord_token+384])
|
153 |
-
|
154 |
-
if first_chord:
|
155 |
-
melody_chords.extend([0])
|
156 |
-
first_chord = False
|
157 |
-
|
158 |
-
for e in c:
|
159 |
-
|
160 |
-
#=======================================================
|
161 |
-
# Timings...
|
162 |
-
|
163 |
-
time = e[1]-pe[1]
|
164 |
-
|
165 |
-
dur = e[2]
|
166 |
-
|
167 |
-
if time != 0 and time % 2 != 0:
|
168 |
-
time += 1
|
169 |
-
if dur % 2 != 0:
|
170 |
-
dur += 1
|
171 |
-
|
172 |
-
delta_time = int(max(0, min(255, time)) / 2)
|
173 |
-
|
174 |
-
# Durations
|
175 |
-
|
176 |
-
dur = int(max(0, min(255, dur)) / 2)
|
177 |
-
|
178 |
-
# Pitches
|
179 |
-
|
180 |
-
ptc = max(1, min(127, e[4]))
|
181 |
-
|
182 |
-
#=======================================================
|
183 |
-
# FINAL NOTE SEQ
|
184 |
-
|
185 |
-
# Writing final note asynchronously
|
186 |
-
|
187 |
-
if delta_time != 0:
|
188 |
-
melody_chords.extend([delta_time, dur+128, ptc+256])
|
189 |
-
if input_strip_notes:
|
190 |
-
if len(c) > 1:
|
191 |
-
times.append(delta_time)
|
192 |
-
durs.append(dur+128)
|
193 |
-
else:
|
194 |
-
times.append(delta_time)
|
195 |
-
durs.append(dur+128)
|
196 |
-
else:
|
197 |
-
melody_chords.extend([dur+128, ptc+256])
|
198 |
-
|
199 |
-
pe = e
|
200 |
-
|
201 |
#==================================================================
|
202 |
|
203 |
print('=' * 70)
|
@@ -368,11 +238,8 @@ if __name__ == "__main__":
|
|
368 |
gr.Markdown(
|
369 |
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Melody2Song-Seq2Seq-Music-Transformer&style=flat)\n\n")
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
input_conditioning_type = gr.Radio(["Chords", "Chords-Times", "Chords-Times-Durations"], label="Conditioning type")
|
374 |
-
input_strip_notes = gr.Checkbox(label="Strip notes from the composition")
|
375 |
-
|
376 |
run_btn = gr.Button("generate", variant="primary")
|
377 |
|
378 |
gr.Markdown("## Generation results")
|
@@ -383,8 +250,7 @@ if __name__ == "__main__":
|
|
383 |
output_plot = gr.Plot(label="Output MIDI score plot")
|
384 |
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
|
385 |
|
386 |
-
|
387 |
-
run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
|
388 |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
|
389 |
|
390 |
app.queue().launch()
|
|
|
1 |
+
# https://huggingface.co/spaces/asigalov61/Melody2Song-Seq2Seq-Music-Transformer
|
2 |
|
3 |
import time as reqtime
|
4 |
import datetime
|
|
|
23 |
# =================================================================================================
|
24 |
|
25 |
@spaces.GPU
|
26 |
+
def GenerateSong(input_melody_seed_number):
|
27 |
print('=' * 70)
|
28 |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
29 |
start_time = reqtime.time()
|
30 |
|
31 |
print('Loading model...')
|
32 |
|
33 |
+
SEQ_LEN = 2560
|
34 |
+
PAD_IDX = 514
|
35 |
DEVICE = 'cuda' # 'cuda'
|
36 |
|
37 |
# instantiate the model
|
|
|
39 |
model = TransformerWrapper(
|
40 |
num_tokens = PAD_IDX+1,
|
41 |
max_seq_len = SEQ_LEN,
|
42 |
+
attn_layers = Decoder(dim = 1024, depth = 24, heads = 16, attn_flash = True)
|
43 |
)
|
44 |
|
45 |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
|
|
|
50 |
print('Loading model checkpoint...')
|
51 |
|
52 |
model.load_state_dict(
|
53 |
+
torch.load('Melody2Song_Seq2Seq_Music_Transformer_Trained_Model_28482_steps_0.719_loss_0.7865_acc.pth',
|
54 |
map_location=DEVICE))
|
55 |
print('=' * 70)
|
56 |
|
|
|
59 |
if DEVICE == 'cpu':
|
60 |
dtype = torch.bfloat16
|
61 |
else:
|
62 |
+
dtype = torch.bfloat16
|
63 |
|
64 |
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
|
65 |
|
66 |
print('Done!')
|
67 |
print('=' * 70)
|
68 |
+
print('Input melody seed number:', input_melody_seed_number)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
print('-' * 70)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
#==================================================================
|
72 |
|
73 |
print('=' * 70)
|
|
|
238 |
gr.Markdown(
|
239 |
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Melody2Song-Seq2Seq-Music-Transformer&style=flat)\n\n")
|
240 |
|
241 |
+
input_melody_seed_number = gr.Slider(0, 200000, value=0, step=1, label="Select seed melody number")
|
242 |
+
|
|
|
|
|
|
|
243 |
run_btn = gr.Button("generate", variant="primary")
|
244 |
|
245 |
gr.Markdown("## Generation results")
|
|
|
250 |
output_plot = gr.Plot(label="Output MIDI score plot")
|
251 |
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
|
252 |
|
253 |
+
run_event = run_btn.click(GenerateSong, [input_melody_seed_number],
|
|
|
254 |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
|
255 |
|
256 |
app.queue().launch()
|