|
|
|
|
|
import os |
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers import util |
|
|
|
import numpy as np |
|
|
|
from datasets import load_dataset |
|
|
|
import gradio as gr |
|
|
|
import copy |
|
import random |
|
import pickle |
|
|
|
import zlib |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
|
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
def find_midi(input_search_string): |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('-' * 70) |
|
print('Req search str:', input_search_string) |
|
print('-' * 70) |
|
|
|
print('Searching...') |
|
|
|
query_embedding = model.encode([input_search_string]) |
|
|
|
|
|
similarities = util.cos_sim(query_embedding, corpus_embeddings) |
|
|
|
top_ten_matches_idxs = np.argsort(-similarities)[0][:10].tolist() |
|
|
|
|
|
closest_index = np.argmax(similarities) |
|
closest_index_match_ratio = max(similarities[0].tolist()) |
|
|
|
best_corpus_match = mc_dataset['train'][closest_index.tolist()] |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
print('Match corpus index', closest_index) |
|
print('Match corpus ratio', closest_index_match_ratio) |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
LAKH_hash = best_corpus_match['location'].split('/')[-1].split('.mid')[0] |
|
LAKH_caption = str(best_corpus_match['caption']) |
|
zlib_file_name = all_MIDI_files_names[MIDI_files_names.index(LAKH_hash)][1] |
|
|
|
print('Fetching MIDI score...') |
|
|
|
with open(zlib_file_name, 'rb') as f: |
|
compressed_data = f.read() |
|
|
|
|
|
decompressed_data = zlib.decompress(compressed_data) |
|
|
|
|
|
scores_data = pickle.loads(decompressed_data) |
|
|
|
fnames = [f[0] for f in scores_data] |
|
|
|
fnameidx = fnames.index(LAKH_hash) |
|
|
|
MIDI_score_metadata = scores_data[fnameidx][1] |
|
MIDI_score_data = scores_data[fnameidx][2] |
|
|
|
print('Rendering results...') |
|
print('=' * 70) |
|
print('MIDi Title:', LAKH_hash) |
|
print('Sample INTs', MIDI_score_data[:12]) |
|
print('=' * 70) |
|
|
|
if len(MIDI_score_data) != 0: |
|
|
|
song = MIDI_score_data |
|
song_f = [] |
|
|
|
time = 0 |
|
dur = 0 |
|
vel = 90 |
|
pitch = 0 |
|
channel = 0 |
|
|
|
patches = [-1] * 16 |
|
|
|
channels = [0] * 16 |
|
channels[9] = 1 |
|
|
|
for ss in song: |
|
|
|
if 0 <= ss < 256: |
|
|
|
time += ss * 16 |
|
|
|
if 256 <= ss < 512: |
|
|
|
dur = (ss-256) * 16 |
|
|
|
if 512 <= ss <= 640: |
|
|
|
patch = (ss-512) |
|
|
|
if patch < 128: |
|
|
|
if patch not in patches: |
|
if 0 in channels: |
|
cha = channels.index(0) |
|
channels[cha] = 1 |
|
else: |
|
cha = 15 |
|
|
|
patches[cha] = patch |
|
channel = patches.index(patch) |
|
else: |
|
channel = patches.index(patch) |
|
|
|
if patch == 128: |
|
channel = 9 |
|
|
|
if 640 < ss < 768: |
|
|
|
ptc = (ss-640) |
|
|
|
if 768 < ss < 896: |
|
|
|
vel = (ss - 768) |
|
|
|
song_f.append(['note', time, dur, channel, ptc, vel, patch ]) |
|
|
|
patches = [0 if x==-1 else x for x in patches] |
|
|
|
song_f = song_f[:3000] |
|
|
|
print('=' * 70) |
|
|
|
|
|
|
|
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, |
|
output_signature = 'LAKH MIDI Dataset Search', |
|
output_file_name = LAKH_hash, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches |
|
) |
|
|
|
new_fn = LAKH_hash + '.mid' |
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
output_midi_title = str(LAKH_hash) |
|
output_midi_caption = str(best_corpus_match['caption']) |
|
output_midi_summary = str(MIDI_score_metadata) |
|
output_midi_caps = str(best_corpus_match) |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi_title, return_plt=True) |
|
|
|
print('Output MIDI file name:', output_midi) |
|
print('Output MIDI caption string:', output_midi_caption) |
|
print('Output MIDI title:', output_midi_title) |
|
print('Output MIDI summary:', output_midi_summary) |
|
print('Output MidiCaps information:', output_midi_caps) |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return output_midi_title, output_midi_caption, output_midi_summary, output_midi_caps, output_midi, output_audio, output_plot |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
print('Loading MidiCaps dataset...') |
|
|
|
mc_dataset = load_dataset("amaai-lab/MidiCaps") |
|
print('=' * 70) |
|
|
|
print('Loading files list...') |
|
|
|
all_MIDI_files_names = TMIDIX.Tegridy_Any_Pickle_File_Reader('LAKH_all_files_names') |
|
MIDI_files_names = [f[0] for f in all_MIDI_files_names] |
|
print('=' * 70) |
|
|
|
print('Loading MIDI corpus embeddings...') |
|
|
|
corpus_embeddings = np.load('MIDI_corpus_embeddings_all-mpnet-base-v2.npz.gz.npz')['data'] |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
print('Loading Sentence Transformer model...') |
|
model = SentenceTransformer('all-mpnet-base-v2') |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
app = gr.Blocks() |
|
|
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>LAKH MIDI Dataset Search</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Search and explore LAKH MIDI dataset with MidiCaps dataset and sentence transformer</h1>") |
|
|
|
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.LAKH-MIDI-Dataset-Search&style=flat)\n\n" |
|
"This is a demo for MidiCaps dataset\n\n" |
|
"Check out [MidiCaps Dataset](https://huggingface.co/datasets/amaai-lab/MidiCaps) on Hugging Face!\n\n" |
|
) |
|
|
|
gr.Markdown("# Enter any desired song description\n\n") |
|
|
|
input_search_string = gr.Textbox(label="Search string", value="Cheery pop song about love and happiness") |
|
submit = gr.Button(value='Search') |
|
gr.ClearButton(components=[input_search_string]) |
|
|
|
gr.Markdown("# Search results") |
|
|
|
output_midi_title = gr.Textbox(label="Output MIDI title") |
|
output_midi_caption = gr.Textbox(label="MIDI caption string") |
|
output_midi_summary = gr.Textbox(label="Aggregated MIDI file text metadata") |
|
output_midi_caps = gr.Textbox(label="MidiCaps dataset information") |
|
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
run_event = submit.click(find_midi, [input_search_string], |
|
[output_midi_title, output_midi_caption, output_midi_summary, output_midi_caps, output_midi, output_audio, output_plot ]) |
|
|
|
app.launch() |