File size: 17,088 Bytes
efe9672 403a65b b6793f7 efe9672 403a65b efe9672 403a65b b6793f7 efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 7e5b8b6 efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b 7e5b8b6 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b efe9672 403a65b 7e5b8b6 efe9672 71fb6fc a45a0f4 71fb6fc efe9672 a45a0f4 71fb6fc a45a0f4 efe9672 a45a0f4 efe9672 403a65b a45a0f4 403a65b a45a0f4 403a65b a45a0f4 efe9672 a45a0f4 71fb6fc 403a65b efe9672 403a65b efe9672 4650137 efe9672 22def4c efe9672 22def4c efe9672 22def4c efe9672 22def4c efe9672 22def4c efe9672 7e5b8b6 b6793f7 efe9672 22def4c efe9672 403a65b b6793f7 efe9672 7e5b8b6 efe9672 403a65b b6793f7 efe9672 403a65b efe9672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# =================================================================================================
# https://huggingface.co/spaces/asigalov61/Melody-Harmonizer-Transformer
# =================================================================================================
import os
import time as reqtime
import datetime
from pytz import timezone
import gradio as gr
import spaces
import os
from tqdm import tqdm
import numpy as np
import torch
from x_transformer_1_23_2 import *
import random
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
# =================================================================================================
@spaces.GPU
def Harmonize_Melody(input_src_midi,
source_melody_transpose_value,
model_top_k_sampling_value,
texture_harmonized_chords,
melody_MIDI_patch_number,
harmonized_accompaniment_MIDI_patch_number,
base_MIDI_patch_number
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
start_time = reqtime.time()
sfn = os.path.basename(input_src_midi.name)
sfn1 = sfn.split('.')[0]
print('Input src MIDI name:', sfn)
print('=' * 70)
print('Requested settings:')
print('Source melody transpose value:', source_melody_transpose_value)
print('Model top_k sampling value:', model_top_k_sampling_value)
print('Texture harmonized chords:', texture_harmonized_chords)
print('Melody MIDI patch number:', melody_MIDI_patch_number)
print('Harmonized accompaniment MIDI patch number:', harmonized_accompaniment_MIDI_patch_number)
print('Base MIDI patch number:', base_MIDI_patch_number)
print('=' * 70)
#==================================================================
print('=' * 70)
print('Loading seed melody...')
#===============================================================================
# Raw single-track ms score
raw_score = TMIDIX.midi2single_track_ms_score(input_src_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#===============================================================================
# Augmented enhanced score notes
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=16)
cscore = [c[0] for c in TMIDIX.chordify_score([1000, escore_notes])]
mel_score = TMIDIX.fix_monophonic_score_durations(TMIDIX.recalculate_score_timings(cscore))
mel_score = TMIDIX.transpose_escore_notes(mel_score, source_melody_transpose_value)
print('=' * 70)
print('Done!')
print('=' * 70)
mel_pitches = [p[4] % 12 for p in mel_score]
print('Melody has', len(mel_pitches), 'notes')
print('=' * 70)
#===============================================================================
print('=' * 70)
print('Melody Harmonizer Transformer')
print('=' * 70)
print('Loading Melody Harmonizer Transformer Model...')
SEQ_LEN = 75
PAD_IDX = 144
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 12, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
model_path = 'Melody_Harmonizer_Transformer_Trained_Model_14961_steps_0.4155_loss_0.8664_acc.pth'
model.load_state_dict(torch.load(model_path))
model.cuda()
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type='cuda', dtype=dtype)
model.eval()
print('Done!')
print('=' * 70)
print('Harmonizing...')
print('=' * 70)
#===============================================================================
mel_remainder_value = (((len(mel_pitches) // 24)+1) * 24) - len(mel_pitches)
mel_pitches_ext = mel_pitches + mel_pitches[:mel_remainder_value]
song = []
for i in range(0, len(mel_pitches_ext)-12, 12):
mel_chunk = mel_pitches_ext[i:i+24]
data = [141] + mel_chunk + [142]
for j in range(24):
data.append(mel_chunk[j])
x = torch.tensor([data], dtype=torch.long, device='cuda')
with ctx:
out = model.generate(x,
1,
filter_logits_fn=top_k,
filter_kwargs={'k': model_top_k_sampling_value},
temperature=1.0,
return_prime=False,
verbose=False)
outy = out.tolist()[0]
data.append(outy[0])
if i != len(mel_pitches_ext)-24:
song.extend(data[26:50])
else:
song.extend(data[26:])
song = song[:len(mel_pitches) * 2]
#===============================================================================
print('Harmonized', len(song) // 2, 'out of', len(mel_pitches), 'notes')
print('Done!')
print('=' * 70)
#===============================================================================
def find_best_match(matches_indexes, previous_match_index):
msigs = []
for midx in matches_indexes:
mat = all_chords_ptcs_chunks[midx]
msig = []
for m in mat:
msig.extend([sum(m) / len(m), len(m)])
msigs.append(msig)
pmat = all_chords_ptcs_chunks[previous_match_index]
psig = []
for p in pmat:
psig.extend([sum(p) / len(p), len(p)])
dists = []
for m in msigs:
dists.append(TMIDIX.minkowski_distance(psig, m))
min_dist = min(dists)
min_dist_idx = dists.index(min_dist)
return matches_indexes[min_dist_idx]
#===============================================================================
if texture_harmonized_chords:
print('=' * 70)
print('Texturing harmonized chords...')
print('=' * 70)
chunk_length = 2
harm_chords = [TMIDIX.ALL_CHORDS_FILTERED[s-12] for s in song if 11 < s < 141]
harm_toks = [TMIDIX.ALL_CHORDS_FILTERED.index(c) for c in harm_chords] + [TMIDIX.ALL_CHORDS_FILTERED.index(harm_chords[-1])] * (chunk_length - (len(harm_chords) % chunk_length))
final_song = []
trg_chunk = np.array(harm_toks[:chunk_length])
sidxs = np.where((src_chunks == trg_chunk).all(axis=1))[0].tolist()
sidx = random.choice(sidxs)
pidx = sidx
final_song.extend(all_chords_ptcs_chunks[sidx])
for i in tqdm(range(chunk_length, len(harm_toks), chunk_length)):
trg_chunk = np.array(harm_toks[i:i+chunk_length])
sidxs = np.where((src_chunks == trg_chunk).all(axis=1))[0].tolist()
if len(sidxs) > 0:
sidx = find_best_match(sidxs, pidx)
pidx = sidx
final_song.extend(all_chords_ptcs_chunks[sidx])
else:
print('Dead end!')
break
final_song = final_song[:len(harm_chords)]
print('=' * 70)
print(len(final_song))
print('=' * 70)
print('Done!')
print('=' * 70)
print('Rendering textured results...')
print('=' * 70)
output_score = []
time = 0
patches = [0] * 16
patches[0] = harmonized_accompaniment_MIDI_patch_number
if base_MIDI_patch_number > -1:
patches[2] = base_MIDI_patch_number
patches[3] = melody_MIDI_patch_number
i = 0
for s in final_song:
time = mel_score[i][1] * 16
dur = mel_score[i][2] * 16
output_score.append(['note', time, dur, 3, mel_score[i][4], 115+(mel_score[i][4] % 12), 40])
for c in s:
pitch = c
output_score.append(['note', time, dur, 0, pitch, max(40, pitch), harmonized_accompaniment_MIDI_patch_number])
if base_MIDI_patch_number > -1:
output_score.append(['note', time, dur, 2, (s[-1] % 12) + 24, 120-(s[-1] % 12), base_MIDI_patch_number])
i += 1
else:
print('Rendering results...')
print('=' * 70)
output_score = []
time = 0
patches = [0] * 16
patches[0] = harmonized_accompaniment_MIDI_patch_number
if base_MIDI_patch_number > -1:
patches[2] = base_MIDI_patch_number
patches[3] = melody_MIDI_patch_number
i = 0
for s in song:
if 11 < s < 141:
time = mel_score[i][1] * 16
dur = mel_score[i][2] * 16
output_score.append(['note', time, dur, 3, mel_score[i][4], 115+(mel_score[i][4] % 12), 40])
chord = TMIDIX.ALL_CHORDS_FILTERED[s-12]
for c in chord:
pitch = 48+c
output_score.append(['note', time, dur, 0, pitch, max(40, pitch), harmonized_accompaniment_MIDI_patch_number])
if base_MIDI_patch_number > -1:
output_score.append(['note', time, dur, 2, chord[-1]+24, 120-chord[-1], base_MIDI_patch_number])
i += 1
fn1 = "Melody-Harmonizer-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Melody Harmonizer Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
#========================================================
output_midi_title = str(fn1)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True)
print('Done!')
#========================================================
harmonization_summary_string = '=' * 70
harmonization_summary_string += '\n'
harmonization_summary_string += 'Source melody has ' + str(len(mel_pitches)) + ' monophonic pitches' + '\n'
harmonization_summary_string += '=' * 70
harmonization_summary_string += '\n'
harmonization_summary_string += 'Harmonized ' + str(len(song) // 2) + ' out of ' + str(len(mel_pitches)) + ' source melody pitches' + '\n'
harmonization_summary_string += '=' * 70
harmonization_summary_string += '\n'
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_audio, output_plot, output_midi, harmonization_summary_string
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#===============================================================================
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
print('Loading Melody Harmonizer Transformer Pitches Chords Pairs Data...')
print('=' * 70)
all_chords_toks_chunks, all_chords_ptcs_chunks = TMIDIX.Tegridy_Any_Pickle_File_Reader('Melody_Harmonizer_Transformer_Pitches_Chords_Pairs_Data')
print('=' * 70)
print('Total number of pitches chords pairs:', len(all_chords_toks_chunks))
print('=' * 70)
print('Loading pitches chords pairs...')
src_chunks = np.array(all_chords_toks_chunks)
print('Done!')
print('=' * 70)
#===============================================================================
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Melody Harmonizer Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Harmonize any MIDI melody with transformers</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Melody-Harmonizer-Transformer&style=flat)\n\n"
"This is a demo for Monster MIDI Dataset\n\n"
"Check out [Monster MIDI Dataset](https://github.com/asigalov61/Monster-MIDI-Dataset) on GitHub!\n\n"
)
gr.Markdown("## Upload your MIDI or select a sample example below")
gr.Markdown("### For best results upload only monophonic melody MIDIs")
input_src_midi = gr.File(label="Source MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("## Select harmonization options")
source_melody_transpose_value = gr.Slider(-6, 6, value=0, step=1, label="Source melody transpose value", info="You can transpose source melody by specified number of semitones if the original melody key does not harmonize well")
model_top_k_sampling_value = gr.Slider(1, 50, value=25, step=1, label="Model sampling top_k value", info="Decreasing this value may produce better harmonization results in some cases")
texture_harmonized_chords = gr.Checkbox(label="Texture harmonized chords", value=True, info="Texture harmonized chords for more pleasant listening")
melody_MIDI_patch_number = gr.Slider(0, 127, value=40, step=1, label="Source melody MIDI patch number")
harmonized_accompaniment_MIDI_patch_number = gr.Slider(0, 127, value=0, step=1, label="Harmonized accompaniment MIDI patch number")
base_MIDI_patch_number = gr.Slider(-1, 127, value=35, step=1, label="Base MIDI patch number")
run_btn = gr.Button("Harmonize Melody", variant="primary")
gr.Markdown("## Harmonization results")
output_summary = gr.Textbox(label="Melody harmonization summary")
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(Harmonize_Melody,
[input_src_midi,
source_melody_transpose_value,
model_top_k_sampling_value,
texture_harmonized_chords,
melody_MIDI_patch_number,
harmonized_accompaniment_MIDI_patch_number,
base_MIDI_patch_number],
[output_audio, output_plot, output_midi, output_summary]
)
gr.Examples(
[
["USSR Anthem Seed Melody.mid", 0, 25, True, 40, 0, 35],
],
[input_src_midi,
source_melody_transpose_value,
model_top_k_sampling_value,
texture_harmonized_chords,
melody_MIDI_patch_number,
harmonized_accompaniment_MIDI_patch_number,
base_MIDI_patch_number],
[output_audio, output_plot, output_midi, output_summary],
Harmonize_Melody,
cache_examples=True,
)
app.queue().launch() |