Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
import torch | |
from peft import PeftModel | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
base_model_id = "mistralai/Mistral-7B-v0.1" | |
ft_model_id = "asusevski/mistraloo-sft" | |
tokenizer = AutoTokenizer.from_pretrained( | |
base_model_id, | |
add_bos_token=True | |
) | |
base_model_id = "mistralai/Mistral-7B-v0.1" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_id, | |
quantization_config=bnb_config, | |
device_map="auto", | |
trust_remote_code=True, | |
token=True | |
) | |
model = PeftModel.from_pretrained(base_model, ft_model_id).to(device) | |
model.eval() | |
def uwaterloo_output(post_title, post_text): | |
prompt = f""" | |
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
Respond to the reddit post in the style of a University of Waterloo student. | |
### Input: | |
{post_title} | |
{post_text} | |
### Response: | |
""" | |
model_input = tokenizer(prompt, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
model_output = model.generate(**model_input, max_new_tokens=256, repetition_penalty=1.15)[0] | |
output = tokenizer.decode(model_output, skip_special_tokens=True) | |
return output.split('### Response:\n')[-1] | |
iface = gr.Interface( | |
fn=uwaterloo_output, | |
inputs=[ | |
gr.Textbox("", label="Post Title"), | |
gr.Textbox("", label="Post Text"), | |
], | |
outputs=gr.Textbox("", label="Mistraloo-SFT") | |
) | |
iface.launch() | |
# base_model_id = "mistralai/Mistral-7B-v0.1" | |
# bnb_config = BitsAndBytesConfig( | |
# load_in_4bit=True, | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_quant_type="nf4", | |
# bnb_4bit_compute_dtype=torch.bfloat16 | |
# ) | |
# base_model = AutoModelForCausalLM.from_pretrained( | |
# base_model_id, # Mistral, same as before | |
# quantization_config=bnb_config, # Same quantization config as before | |
# device_map="auto", | |
# trust_remote_code=True, | |
# use_auth_token=True | |
# ) | |
# ft_model = PeftModel.from_pretrained(base_model, "mistral-mistraloo/checkpoint-500") |