File size: 2,101 Bytes
810c8ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
scale: 4
num_gpu: 1
manual_seed: 0
is_train: True
dist: False

# ----------------- options for synthesizing training data ----------------- #
# USM the ground-truth
l1_gt_usm: True
percep_gt_usm: True
gan_gt_usm: False

# the first degradation process
resize_prob: [0.2, 0.7, 0.1]  # up, down, keep
resize_range: [0.15, 1.5]
gaussian_noise_prob: 1
noise_range: [1, 30]
poisson_scale_range: [0.05, 3]
gray_noise_prob: 1
jpeg_range: [30, 95]

# the second degradation process
second_blur_prob: 1
resize_prob2: [0.3, 0.4, 0.3]  # up, down, keep
resize_range2: [0.3, 1.2]
gaussian_noise_prob2: 1
noise_range2: [1, 25]
poisson_scale_range2: [0.05, 2.5]
gray_noise_prob2: 1
jpeg_range2: [30, 95]

gt_size: 32
queue_size: 1

# network structures
network_g:
  type: RRDBNet
  num_in_ch: 3
  num_out_ch: 3
  num_feat: 4
  num_block: 1
  num_grow_ch: 2

network_d:
  type: UNetDiscriminatorSN
  num_in_ch: 3
  num_feat: 2
  skip_connection: True

# path
path:
  pretrain_network_g: ~
  param_key_g: params_ema
  strict_load_g: true
  resume_state: ~

# training settings
train:
  ema_decay: 0.999
  optim_g:
    type: Adam
    lr: !!float 1e-4
    weight_decay: 0
    betas: [0.9, 0.99]
  optim_d:
    type: Adam
    lr: !!float 1e-4
    weight_decay: 0
    betas: [0.9, 0.99]

  scheduler:
    type: MultiStepLR
    milestones: [400000]
    gamma: 0.5

  total_iter: 400000
  warmup_iter: -1  # no warm up

  # losses
  pixel_opt:
    type: L1Loss
    loss_weight: 1.0
    reduction: mean
  # perceptual loss (content and style losses)
  perceptual_opt:
    type: PerceptualLoss
    layer_weights:
      # before relu
      'conv1_2': 0.1
      'conv2_2': 0.1
      'conv3_4': 1
      'conv4_4': 1
      'conv5_4': 1
    vgg_type: vgg19
    use_input_norm: true
    perceptual_weight: !!float 1.0
    style_weight: 0
    range_norm: false
    criterion: l1
  # gan loss
  gan_opt:
    type: GANLoss
    gan_type: vanilla
    real_label_val: 1.0
    fake_label_val: 0.0
    loss_weight: !!float 1e-1

  net_d_iters: 1
  net_d_init_iters: 0


# validation settings
val:
  val_freq: !!float 5e3
  save_img: False