# Load the pre-trained model and tokenizer model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True) # Upload your dataset uploaded = files.upload() # Load the dataset filename = next(iter(uploaded)) # Automatically get the first uploaded file's name df = pd.read_excel(filename) # Read the uploaded Excel file # Display the columns in the uploaded DataFrame to help identify correct names print("Columns in the dataset:", df.columns.tolist()) # Function to search by name and return the PEC number def search_by_name(name): name_matches = df[df['Name'].str.contains(name, case=False, na=False)] if not name_matches.empty: return f"Your PEC number: {name_matches['PEC No'].values[0]}" else: return "No matches found for your name." # Gradio interface with the updated syntax iface = gr.Interface( fn=search_by_name, inputs=gr.Textbox(label="Please write your Name"), outputs=gr.Textbox(label="Your PEC number"), title="PEC Number Lookup", description="Enter your name to find your PEC number." ) # Launch the Gradio interface iface.launch()