Tarbelian / app.py
atifsial123's picture
Update app.py
5a2d335 verified
import os
import subprocess
# Function to install a package if it is not already installed
def install(package):
subprocess.check_call([os.sys.executable, "-m", "pip", "install", package])
# Ensure the necessary packages are installed
install("pandas")
install("gradio")
install("openpyxl")
import pandas as pd
import gradio as gr
# Path to the Excel file
file_path = 'cleaned_data.xlsx'
# Function to load the dataset from the provided file path
def load_dataset():
try:
df = pd.read_excel(file_path)
print("File loaded successfully.")
print(df.head()) # Print first few rows for debugging
return df
except Exception as e:
print(f"Error loading file: {e}")
return None
# Function to get details based on the name or phone number
def get_details(name, phone_number, df):
# Clean the 'Name' column for consistent searching
df['Name'] = df['Name'].astype(str).str.strip().str.lower()
df['Contact Number (Whatsapp)'] = df['Contact Number (Whatsapp)'].astype(str).str.strip()
name = name.strip().lower() if name else None
phone_number = phone_number.strip() if phone_number else None
print(f"Searching for Name: {name}, Phone Number: {phone_number}") # Debugging output
# Filter based on the provided inputs
if name and phone_number:
results = df[(df['Name'].str.contains(name, case=False, na=False)) |
(df['Contact Number (Whatsapp)'] == phone_number)]
elif name:
results = df[df['Name'].str.contains(name, case=False, na=False)]
elif phone_number:
results = df[df['Contact Number (Whatsapp)'] == phone_number]
else:
return None # If neither is provided, return None
if not results.empty:
print(f"Found Details: {results.to_dict('records')}") # Debugging output
return results.to_dict('records')[0] # Return the first match for simplicity
else:
print("No matching records found.") # Debugging output
return None
# Function to format the output in HTML
def format_output(details):
if details is None:
return "No matching records found."
# Build HTML table for a cleaner presentation
html = "<table style='border-collapse: collapse; width: 100%;'>"
html += "<tr style='background-color: #f2f2f2;'><th style='border: 1px solid #ddd; padding: 8px;'>Ex Cadet</th><th style='border: 1px solid #ddd; padding: 8px;'>Ex Cadet Detail</th></tr>"
for key, value in details.items():
html += f"<tr><td style='border: 1px solid #ddd; padding: 8px;'>{key}</td><td style='border: 1px solid #ddd; padding: 8px;'>{value if value else 'N/A'}</td></tr>"
html += "</table>"
return html
# Function to add or update details
def add_or_update_details(name, phone_number, current_occupation, pass_out_year):
try:
# Load the existing data
df = load_dataset()
if df is None:
return "Error loading data."
# Find the entry for the name or phone number
details = get_details(name, phone_number, df)
if details:
# Update the phone number, current occupation, and pass out year
if phone_number:
df.loc[df['Name'].str.lower() == name.strip().lower(), 'Contact Number (Whatsapp)'] = phone_number
if current_occupation:
df.loc[df['Name'].str.lower() == name.strip().lower(), 'Current Occupation'] = current_occupation
if pass_out_year:
df.loc[df['Name'].str.lower() == name.strip().lower(), 'Pass Out Year'] = pass_out_year
message = "Phone number, occupation, and pass out year updated successfully."
else:
# Add a new entry if the name or phone number was not found
new_entry = {
'Name': name,
'Contact Number (Whatsapp)': phone_number,
'Current Occupation': current_occupation,
'Pass Out Year': pass_out_year,
# Add other fields with default values as needed
}
df = df.append(new_entry, ignore_index=True)
message = "New entry added successfully."
# Save the updated DataFrame back to the Excel file
df.to_excel(file_path, index=False)
print("Data saved successfully.")
return message
except Exception as e:
print(f"An error occurred: {e}")
return f"Error: {e}"
# Combine the functions to create a prediction and update functionality
def predict_and_update(name, phone_number=None, current_occupation=None, pass_out_year=None):
try:
# Load the dataset from the provided file path
df = load_dataset()
if df is None:
return "Error loading the file."
# Get details for the provided name or phone number
details = get_details(name, phone_number, df)
details_html = format_output(details)
# If a phone number, current occupation, or pass out year is provided, update or add the details
if phone_number or current_occupation or pass_out_year:
update_message = add_or_update_details(name, phone_number, current_occupation, pass_out_year)
return f"{details_html}<br><br>{update_message}"
else:
return details_html
except Exception as e:
print(f"An error occurred: {e}")
return f"Error: {e}"
# Build the Gradio interface with additional fields for updates
iface = gr.Interface(
fn=predict_and_update,
inputs=[
gr.Textbox(lines=1, label="**Enter Name** (Optional)"),
gr.Textbox(lines=1, label="**Phone Number** (Optional)"),
gr.Textbox(lines=1, label="**Current Occupation** (Optional - to add/update)"),
gr.Textbox(lines=1, label="**Pass Out Year** (Optional - to add/update)")
],
outputs="html",
title="Name and Phone Number Lookup and Update",
description="Enter a name or phone number to find details associated with it from the 'cleaned_data.xlsx' file. Optionally, add or update the phone number, current occupation, and pass out year."
)
# Run the Gradio interface
if __name__ == "__main__":
iface.launch()