atlury commited on
Commit
8242b6e
1 Parent(s): f7a222c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -20
app.py CHANGED
@@ -2,45 +2,122 @@ import gradio as gr
2
  from ultralytics import YOLO
3
  import spaces
4
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  # Load pre-trained YOLOv8 model
7
- model = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- # Get class names from model
10
- class_names = model.names
 
 
 
 
 
11
 
12
  @spaces.GPU(duration=60)
13
- def process_image(image):
14
  try:
15
- # Process the image
16
- results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
17
- result = results[0] # Get the first result
 
 
 
 
 
 
 
 
18
 
19
- # Extract annotated image and labels with class names
20
- annotated_image = result.plot()
 
 
 
 
 
 
 
21
 
22
- # Use cls attribute for labels and get class name from model
23
- detected_areas_labels = "\n".join([
24
- f"{class_names[int(box.cls.item())].upper()}: {float(box.conf):.2f}" for box in result.boxes
25
- ])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
- return annotated_image, detected_areas_labels
28
  except Exception as e:
29
  return None, f"Error processing image: {e}"
30
 
31
  # Create the Gradio Interface
32
  with gr.Blocks() as demo:
33
  gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
34
-
35
  with gr.Row():
 
36
  input_image = gr.Image(type="pil", label="Upload Image")
37
- output_image = gr.Image(type="pil", label="Annotated Image")
38
-
39
  output_text = gr.Textbox(label="Detected Areas and Labels")
40
-
41
- # Button to trigger inference
42
  btn = gr.Button("Run Document Segmentation")
43
- btn.click(fn=process_image, inputs=input_image, outputs=[output_image, output_text])
44
 
45
  # Launch the demo with queuing
46
  demo.queue(max_size=1).launch()
 
2
  from ultralytics import YOLO
3
  import spaces
4
  import torch
5
+ import cv2
6
+ import numpy as np
7
+ import os
8
+ import requests
9
+
10
+ # Define constants for the new model
11
+ ENTITIES_COLORS = {
12
+ "Caption": (191, 100, 21),
13
+ "Footnote": (2, 62, 115),
14
+ "Formula": (140, 80, 58),
15
+ "List-item": (168, 181, 69),
16
+ "Page-footer": (2, 69, 84),
17
+ "Page-header": (83, 115, 106),
18
+ "Picture": (255, 72, 88),
19
+ "Section-header": (0, 204, 192),
20
+ "Table": (116, 127, 127),
21
+ "Text": (0, 153, 221),
22
+ "Title": (196, 51, 2)
23
+ }
24
+ BOX_PADDING = 2
25
 
26
  # Load pre-trained YOLOv8 model
27
+ model_path_1 = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
28
+ model_path_2 = "models/dla-model.pt"
29
+
30
+ if not os.path.exists(model_path_1):
31
+ # Download the model file if it doesn't exist
32
+ model_url_1 = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
33
+ response = requests.get(model_url_1)
34
+ with open(model_path_1, "wb") as f:
35
+ f.write(response.content)
36
+
37
+ if not os.path.exists(model_path_2):
38
+ # Assume the second model file is manually uploaded in the specified path
39
 
40
+ # Load models
41
+ model_1 = YOLO(model_path_1)
42
+ model_2 = YOLO(model_path_2)
43
+
44
+ # Get class names from the first model
45
+ class_names_1 = model_1.names
46
+ class_names_2 = list(ENTITIES_COLORS.keys())
47
 
48
  @spaces.GPU(duration=60)
49
+ def process_image(image, model_choice):
50
  try:
51
+ if model_choice == "YOLOv8 Model":
52
+ # Use the first model
53
+ results = model_1(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
54
+ result = results[0]
55
+
56
+ # Extract annotated image and labels with class names
57
+ annotated_image = result.plot()
58
+
59
+ detected_areas_labels = "\n".join([
60
+ f"{class_names_1[int(box.cls.item())].upper()}: {float(box.conf):.2f}" for box in result.boxes
61
+ ])
62
 
63
+ return annotated_image, detected_areas_labels
64
+
65
+ elif model_choice == "DLA Model":
66
+ # Use the second model
67
+ image_path = "input_image.jpg" # Temporary save the uploaded image
68
+ cv2.imwrite(image_path, cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
69
+ image = cv2.imread(image_path)
70
+ results = model_2.predict(source=image, conf=0.2, iou=0.8)
71
+ boxes = results[0].boxes
72
 
73
+ if len(boxes) == 0:
74
+ return image
75
+
76
+ for box in boxes:
77
+ detection_class_conf = round(box.conf.item(), 2)
78
+ cls = class_names_2[int(box.cls)]
79
+ start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1]))
80
+ end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3]))
81
+
82
+ line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1
83
+ image = cv2.rectangle(img=image,
84
+ pt1=start_box,
85
+ pt2=end_box,
86
+ color=ENTITIES_COLORS[cls],
87
+ thickness=line_thickness)
88
+
89
+ text = cls + " " + str(detection_class_conf)
90
+ font_thickness = max(line_thickness - 1, 1)
91
+ (text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness)
92
+ image = cv2.rectangle(img=image,
93
+ pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2),
94
+ pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]),
95
+ color=ENTITIES_COLORS[cls],
96
+ thickness=-1)
97
+ start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING)
98
+ image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness)
99
+
100
+ return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), "Labels: " + ", ".join(class_names_2)
101
+
102
+ else:
103
+ return None, "Invalid model choice"
104
 
 
105
  except Exception as e:
106
  return None, f"Error processing image: {e}"
107
 
108
  # Create the Gradio Interface
109
  with gr.Blocks() as demo:
110
  gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
111
+
112
  with gr.Row():
113
+ model_choice = gr.Dropdown(["YOLOv8 Model", "DLA Model"], label="Select Model", value="YOLOv8 Model")
114
  input_image = gr.Image(type="pil", label="Upload Image")
115
+
116
+ output_image = gr.Image(type="pil", label="Annotated Image")
117
  output_text = gr.Textbox(label="Detected Areas and Labels")
118
+
 
119
  btn = gr.Button("Run Document Segmentation")
120
+ btn.click(fn=process_image, inputs=[input_image, model_choice], outputs=[output_image, output_text])
121
 
122
  # Launch the demo with queuing
123
  demo.queue(max_size=1).launch()