Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
|
|
3 |
import os
|
4 |
-
import
|
5 |
import torch
|
6 |
-
import
|
|
|
7 |
|
8 |
CUSTOM_CSS = """
|
9 |
#output_box textarea {
|
@@ -11,6 +14,34 @@ CUSTOM_CSS = """
|
|
11 |
}
|
12 |
"""
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
zero = torch.Tensor([0]).cuda()
|
15 |
print(zero.device) # <-- 'cpu' 🤔
|
16 |
|
@@ -49,4 +80,22 @@ with gr.Blocks(css=CUSTOM_CSS) as demo:
|
|
49 |
|
50 |
check.change(run, inputs=[check], outputs=output, every=1)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
demo.queue().launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
import os
|
6 |
+
import requests
|
7 |
import torch
|
8 |
+
import datetime
|
9 |
+
import subprocess
|
10 |
|
11 |
CUSTOM_CSS = """
|
12 |
#output_box textarea {
|
|
|
14 |
}
|
15 |
"""
|
16 |
|
17 |
+
# Ensure the model file is in the correct location
|
18 |
+
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
19 |
+
if not os.path.exists(model_path):
|
20 |
+
# Download the model file if it doesn't exist
|
21 |
+
model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
22 |
+
response = requests.get(model_url)
|
23 |
+
with open(model_path, "wb") as f:
|
24 |
+
f.write(response.content)
|
25 |
+
|
26 |
+
# Load the document segmentation model
|
27 |
+
docseg_model = YOLO(model_path)
|
28 |
+
|
29 |
+
def process_image(image):
|
30 |
+
# Convert image to the format YOLO model expects
|
31 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
32 |
+
results = docseg_model(image)
|
33 |
+
|
34 |
+
# Extract annotated image from results
|
35 |
+
annotated_img = results[0].plot()
|
36 |
+
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
|
37 |
+
|
38 |
+
# Prepare detected areas and labels as text output
|
39 |
+
detected_areas_labels = "\n".join(
|
40 |
+
[f"{box.label}: {box.conf:.2f}" for box in results[0].boxes]
|
41 |
+
)
|
42 |
+
|
43 |
+
return annotated_img, detected_areas_labels
|
44 |
+
|
45 |
zero = torch.Tensor([0]).cuda()
|
46 |
print(zero.device) # <-- 'cpu' 🤔
|
47 |
|
|
|
80 |
|
81 |
check.change(run, inputs=[check], outputs=output, every=1)
|
82 |
|
83 |
+
# Define the Gradio interface
|
84 |
+
with gr.Blocks() as interface:
|
85 |
+
gr.Markdown("### Document Segmentation using YOLOv8")
|
86 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
87 |
+
output_image = gr.Image(type="pil", label="Annotated Image")
|
88 |
+
output_text = gr.Textbox(label="Detected Areas and Labels")
|
89 |
+
|
90 |
+
gr.Button("Run").click(
|
91 |
+
fn=process_image,
|
92 |
+
inputs=input_image,
|
93 |
+
outputs=[output_image, output_text]
|
94 |
+
)
|
95 |
+
|
96 |
demo.queue().launch(show_api=False)
|
97 |
+
interface.launch()
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
demo.launch()
|
101 |
+
interface.launch()
|