atlury commited on
Commit
c4dd123
1 Parent(s): 0aa924d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -9,8 +9,7 @@ model = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
9
  # Get class names from model
10
  class_names = model.names
11
 
12
-
13
- @spaces.GPU(duration=60)
14
  def process_image(image):
15
  try:
16
  # Process the image
@@ -22,16 +21,16 @@ def process_image(image):
22
 
23
  # Use cls attribute for labels and get class name from model
24
  detected_areas_labels = "\n".join([
25
- f"{class_names[int(box.cls.item())].upper()}: {box.conf:.2f}" for box in result.boxes
26
  ])
27
 
28
  return annotated_image, detected_areas_labels
29
  except Exception as e:
30
- return None, f"Error processing image: {e}"
31
 
32
  # Create the Gradio Interface
33
  with gr.Blocks() as demo:
34
- gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
35
  # Input Components
36
  input_image = gr.Image(type="pil", label="Upload Image")
37
 
@@ -44,4 +43,4 @@ with gr.Blocks() as demo:
44
  btn.click(fn=process_image, inputs=input_image, outputs=[output_image, output_text])
45
 
46
  # Launch the demo with queuing
47
- demo.queue(max_size=1).launch()
 
9
  # Get class names from model
10
  class_names = model.names
11
 
12
+ @spaces.GPU(duration=60)
 
13
  def process_image(image):
14
  try:
15
  # Process the image
 
21
 
22
  # Use cls attribute for labels and get class name from model
23
  detected_areas_labels = "\n".join([
24
+ f"{class_names[int(box.cls.item())].upper()}: {float(box.conf):.2f}" for box in result.boxes
25
  ])
26
 
27
  return annotated_image, detected_areas_labels
28
  except Exception as e:
29
+ return None, f"Error processing image: {e}"
30
 
31
  # Create the Gradio Interface
32
  with gr.Blocks() as demo:
33
+ gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
34
  # Input Components
35
  input_image = gr.Image(type="pil", label="Upload Image")
36
 
 
43
  btn.click(fn=process_image, inputs=input_image, outputs=[output_image, output_text])
44
 
45
  # Launch the demo with queuing
46
+ demo.queue(max_size=1).launch()