import gradio as gr from ultralytics import YOLO import spaces import torch import cv2 import numpy as np import os import requests # Define constants for the new model ENTITIES_COLORS = { "Caption": (191, 100, 21), "Footnote": (2, 62, 115), "Formula": (140, 80, 58), "List-item": (168, 181, 69), "Page-footer": (2, 69, 84), "Page-header": (83, 115, 106), "Picture": (255, 72, 88), "Section-header": (0, 204, 192), "Table": (116, 127, 127), "Text": (0, 153, 221), "Title": (196, 51, 2) } BOX_PADDING = 2 # Load pre-trained YOLOv8 models model_paths = { "YOLOv8x Model": "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt", "YOLOv8m Model": "yolov8m-doclaynet.pt", "YOLOv8n Model": "yolov8n-doclaynet.pt", "YOLOv8s Model": "yolov8s-doclaynet.pt", "DLA Model": "models/dla-model.pt" } # Ensure the model files are in the correct location for model_name, model_path in model_paths.items(): if not os.path.exists(model_path): # For demonstration, we only download the YOLOv8x model if model_name == "YOLOv8x Model": model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" response = requests.get(model_url) with open(model_path, "wb") as f: f.write(response.content) # Load models models = {name: YOLO(path) for name, path in model_paths.items()} # Get class names from the YOLOv8 models class_names = list(ENTITIES_COLORS.keys()) @spaces.GPU(duration=60) def process_image(image, model_choice): try: if "YOLOv8" in model_choice: # Use the selected YOLOv8 model model = models[model_choice] results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True) result = results[0] # Extract annotated image and labels with class names annotated_image = result.plot() detected_areas_labels = "\n".join([ f"{class_names[int(box.cls.item())].upper()}: {float(box.conf):.2f}" for box in result.boxes ]) return annotated_image, detected_areas_labels elif model_choice == "DLA Model": # Use the DLA model image_path = "input_image.jpg" # Temporary save the uploaded image cv2.imwrite(image_path, cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) image = cv2.imread(image_path) results = models[model_choice].predict(source=image, conf=0.2, iou=0.8) boxes = results[0].boxes if len(boxes) == 0: return image for box in boxes: detection_class_conf = round(box.conf.item(), 2) cls = class_names[int(box.cls)] start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1])) end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3])) line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 image = cv2.rectangle(img=image, pt1=start_box, pt2=end_box, color=ENTITIES_COLORS[cls], thickness=line_thickness) text = cls + " " + str(detection_class_conf) font_thickness = max(line_thickness - 1, 1) (text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness) image = cv2.rectangle(img=image, pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2), pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]), color=ENTITIES_COLORS[cls], thickness=-1) start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING) image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), "Labels: " + ", ".join(class_names) else: return None, "Invalid model choice" except Exception as e: return None, f"Error processing image: {e}" # Create the Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Document Layout Segmentation Comparison (ZeroGPU)") with gr.Row(): input_image = gr.Image(type="pil", label="Upload Image") output_image = gr.Image(type="pil", label="Annotated Image") model_choice = gr.Dropdown(list(model_paths.keys()), label="Select Model", value="YOLOv8x Model", scale=0.5) output_text = gr.Textbox(label="Detected Areas and Labels") btn = gr.Button("Run Document Segmentation") btn.click(fn=process_image, inputs=[input_image, model_choice], outputs=[output_image, output_text]) # Launch the demo with queuing demo.queue(max_size=1).launch()