File size: 71,259 Bytes
211b491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.activations import get_activation
from diffusers.models.attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    Attention,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
from einops import rearrange

from diffusers.models.embeddings import (
    GaussianFourierProjection,
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
    PositionNet,
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)


from diffusers.models.modeling_utils import ModelMixin
from src.unet_block_hacked_tryon import (
    UNetMidBlock2D,
    UNetMidBlock2DCrossAttn,
    UNetMidBlock2DSimpleCrossAttn,
    get_down_block,
    get_up_block,
)
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
from diffusers.models.transformer_2d import Transformer2DModel
import math

from ip_adapter.ip_adapter import Resampler


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# def FeedForward(dim, mult=4):
#     inner_dim = int(dim * mult)
#     return nn.Sequential(
#         nn.LayerNorm(dim),
#         nn.Linear(dim, inner_dim, bias=False),
#         nn.GELU(),
#         nn.Linear(inner_dim, dim, bias=False),
#     )



# def reshape_tensor(x, heads):
#     bs, length, width = x.shape
#     # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
#     x = x.view(bs, length, heads, -1)
#     # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
#     x = x.transpose(1, 2)
#     # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
#     x = x.reshape(bs, heads, length, -1)
#     return x


# class PerceiverAttention(nn.Module):
#     def __init__(self, *, dim, dim_head=64, heads=8):
#         super().__init__()
#         self.scale = dim_head**-0.5
#         self.dim_head = dim_head
#         self.heads = heads
#         inner_dim = dim_head * heads

#         self.norm1 = nn.LayerNorm(dim)
#         self.norm2 = nn.LayerNorm(dim)

#         self.to_q = nn.Linear(dim, inner_dim, bias=False)
#         self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
#         self.to_out = nn.Linear(inner_dim, dim, bias=False)

#     def forward(self, x, latents):
#         """
#         Args:
#             x (torch.Tensor): image features
#                 shape (b, n1, D)
#             latent (torch.Tensor): latent features
#                 shape (b, n2, D)
#         """
#         x = self.norm1(x)
#         latents = self.norm2(latents)

#         b, l, _ = latents.shape

#         q = self.to_q(latents)
#         kv_input = torch.cat((x, latents), dim=-2)
#         k, v = self.to_kv(kv_input).chunk(2, dim=-1)

#         q = reshape_tensor(q, self.heads)
#         k = reshape_tensor(k, self.heads)
#         v = reshape_tensor(v, self.heads)

#         # attention
#         scale = 1 / math.sqrt(math.sqrt(self.dim_head))
#         weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
#         weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
#         out = weight @ v

#         out = out.permute(0, 2, 1, 3).reshape(b, l, -1)

#         return self.to_out(out)


# class Resampler(nn.Module):
#     def __init__(
#         self,
#         dim=1024,
#         depth=8,
#         dim_head=64,
#         heads=16,
#         num_queries=8,
#         embedding_dim=768,
#         output_dim=1024,
#         ff_mult=4,
#         max_seq_len: int = 257,  # CLIP tokens + CLS token
#         apply_pos_emb: bool = False,
#         num_latents_mean_pooled: int = 0,  # number of latents derived from mean pooled representation of the sequence
#     ):
#         super().__init__()

#         self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)

#         self.proj_in = nn.Linear(embedding_dim, dim)

#         self.proj_out = nn.Linear(dim, output_dim)
#         self.norm_out = nn.LayerNorm(output_dim)

#         self.layers = nn.ModuleList([])
#         for _ in range(depth):
#             self.layers.append(
#                 nn.ModuleList(
#                     [
#                         PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
#                         FeedForward(dim=dim, mult=ff_mult),
#                     ]
#                 )
#             )

#     def forward(self, x):

#         latents = self.latents.repeat(x.size(0), 1, 1)

#         x = self.proj_in(x)


#         for attn, ff in self.layers:
#             latents = attn(x, latents) + latents
#             latents = ff(latents) + latents

#         latents = self.proj_out(latents)
#         return self.norm_out(latents)


def zero_module(module):
    for p in module.parameters():
        nn.init.zeros_(p)
    return module

@dataclass
class UNet2DConditionOutput(BaseOutput):
    """

    The output of [`UNet2DConditionModel`].



    Args:

        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):

            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.

    """

    sample: torch.FloatTensor = None


class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
    r"""

    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample

    shaped output.



    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented

    for all models (such as downloading or saving).



    Parameters:

        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):

            Height and width of input/output sample.

        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.

        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.

        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.

        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):

            Whether to flip the sin to cos in the time embedding.

        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.

        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):

            The tuple of downsample blocks to use.

        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):

            Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or

            `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.

        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):

            The tuple of upsample blocks to use.

        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):

            Whether to include self-attention in the basic transformer blocks, see

            [`~models.attention.BasicTransformerBlock`].

        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):

            The tuple of output channels for each block.

        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.

        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.

        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.

        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.

        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.

        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.

            If `None`, normalization and activation layers is skipped in post-processing.

        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.

        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):

            The dimension of the cross attention features.

        transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):

            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for

            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],

            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].

       reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):

            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling

            blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for

            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],

            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].

        encoder_hid_dim (`int`, *optional*, defaults to None):

            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`

            dimension to `cross_attention_dim`.

        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):

            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text

            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.

        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.

        num_attention_heads (`int`, *optional*):

            The number of attention heads. If not defined, defaults to `attention_head_dim`

        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config

            for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.

        class_embed_type (`str`, *optional*, defaults to `None`):

            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,

            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.

        addition_embed_type (`str`, *optional*, defaults to `None`):

            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or

            "text". "text" will use the `TextTimeEmbedding` layer.

        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):

            Dimension for the timestep embeddings.

        num_class_embeds (`int`, *optional*, defaults to `None`):

            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing

            class conditioning with `class_embed_type` equal to `None`.

        time_embedding_type (`str`, *optional*, defaults to `positional`):

            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.

        time_embedding_dim (`int`, *optional*, defaults to `None`):

            An optional override for the dimension of the projected time embedding.

        time_embedding_act_fn (`str`, *optional*, defaults to `None`):

            Optional activation function to use only once on the time embeddings before they are passed to the rest of

            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.

        timestep_post_act (`str`, *optional*, defaults to `None`):

            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.

        time_cond_proj_dim (`int`, *optional*, defaults to `None`):

            The dimension of `cond_proj` layer in the timestep embedding.

        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,

        *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,

        *optional*): The dimension of the `class_labels` input when

            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.

        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time

            embeddings with the class embeddings.

        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):

            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If

            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the

            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`

            otherwise.

    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(

        self,

        sample_size: Optional[int] = None,

        in_channels: int = 4,

        out_channels: int = 4,

        center_input_sample: bool = False,

        flip_sin_to_cos: bool = True,

        freq_shift: int = 0,

        down_block_types: Tuple[str] = (

            "CrossAttnDownBlock2D",

            "CrossAttnDownBlock2D",

            "CrossAttnDownBlock2D",

            "DownBlock2D",

        ),

        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",

        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),

        only_cross_attention: Union[bool, Tuple[bool]] = False,

        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),

        layers_per_block: Union[int, Tuple[int]] = 2,

        downsample_padding: int = 1,

        mid_block_scale_factor: float = 1,

        dropout: float = 0.0,

        act_fn: str = "silu",

        norm_num_groups: Optional[int] = 32,

        norm_eps: float = 1e-5,

        cross_attention_dim: Union[int, Tuple[int]] = 1280,

        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,

        reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,

        encoder_hid_dim: Optional[int] = None,

        encoder_hid_dim_type: Optional[str] = None,

        attention_head_dim: Union[int, Tuple[int]] = 8,

        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,

        dual_cross_attention: bool = False,

        use_linear_projection: bool = False,

        class_embed_type: Optional[str] = None,

        addition_embed_type: Optional[str] = None,

        addition_time_embed_dim: Optional[int] = None,

        num_class_embeds: Optional[int] = None,

        upcast_attention: bool = False,

        resnet_time_scale_shift: str = "default",

        resnet_skip_time_act: bool = False,

        resnet_out_scale_factor: int = 1.0,

        time_embedding_type: str = "positional",

        time_embedding_dim: Optional[int] = None,

        time_embedding_act_fn: Optional[str] = None,

        timestep_post_act: Optional[str] = None,

        time_cond_proj_dim: Optional[int] = None,

        conv_in_kernel: int = 3,

        conv_out_kernel: int = 3,

        projection_class_embeddings_input_dim: Optional[int] = None,

        attention_type: str = "default",

        class_embeddings_concat: bool = False,

        mid_block_only_cross_attention: Optional[bool] = None,

        cross_attention_norm: Optional[str] = None,

        addition_embed_type_num_heads=64,

    ):
        super().__init__()

        self.sample_size = sample_size

        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )
        if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
            for layer_number_per_block in transformer_layers_per_block:
                if isinstance(layer_number_per_block, list):
                    raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")

        # input
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        # time
        if time_embedding_type == "fourier":
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
            )

        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )

        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
        elif encoder_hid_dim_type == "ip_image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = Resampler(
                dim=1280,
                depth=4,
                dim_head=64,
                heads=20,
                num_queries=16,
                embedding_dim=encoder_hid_dim,
                output_dim=self.config.cross_attention_dim,
                ff_mult=4,
            )
                                    
            
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
        else:
            self.encoder_hid_proj = None

        # class embedding
        if class_embed_type is None and num_class_embeds is not None:
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
        else:
            self.class_embedding = None

        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type is not None:
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")

        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
            self.time_embed_act = get_activation(time_embedding_act_fn)

        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        if isinstance(only_cross_attention, bool):
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

            only_cross_attention = [only_cross_attention] * len(down_block_types)

        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block[i],
                transformer_layers_per_block=transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=blocks_time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim[i],
                num_attention_heads=num_attention_heads[i],
                downsample_padding=downsample_padding,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                attention_type=attention_type,
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
                cross_attention_norm=cross_attention_norm,
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
                dropout=dropout,
            )
            self.down_blocks.append(down_block)

        # mid
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                transformer_layers_per_block=transformer_layers_per_block[-1],
                in_channels=block_out_channels[-1],
                temb_channels=blocks_time_embed_dim,
                dropout=dropout,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
                cross_attention_dim=cross_attention_dim[-1],
                num_attention_heads=num_attention_heads[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
                attention_type=attention_type,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=blocks_time_embed_dim,
                dropout=dropout,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                cross_attention_dim=cross_attention_dim[-1],
                attention_head_dim=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
                skip_time_act=resnet_skip_time_act,
                only_cross_attention=mid_block_only_cross_attention,
                cross_attention_norm=cross_attention_norm,
            )
        elif mid_block_type == "UNetMidBlock2D":
            self.mid_block = UNetMidBlock2D(
                in_channels=block_out_channels[-1],
                temb_channels=blocks_time_embed_dim,
                dropout=dropout,
                num_layers=0,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
                add_attention=False,
            )
        elif mid_block_type is None:
            self.mid_block = None
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))
        reversed_layers_per_block = list(reversed(layers_per_block))
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
        reversed_transformer_layers_per_block = (
            list(reversed(transformer_layers_per_block))
            if reverse_transformer_layers_per_block is None
            else reverse_transformer_layers_per_block
        )
        only_cross_attention = list(reversed(only_cross_attention))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
            up_block = get_up_block(
                up_block_type,
                num_layers=reversed_layers_per_block[i] + 1,
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=blocks_time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resolution_idx=i,
                resnet_groups=norm_num_groups,
                cross_attention_dim=reversed_cross_attention_dim[i],
                num_attention_heads=reversed_num_attention_heads[i],
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                attention_type=attention_type,
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
                cross_attention_norm=cross_attention_norm,
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
                dropout=dropout,
            )

            self.up_blocks.append(up_block)
            prev_output_channel = output_channel




        # out
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )

            self.conv_act = get_activation(act_fn)

        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )

        if attention_type in ["gated", "gated-text-image"]:
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
                positive_len = cross_attention_dim[0]

            feature_type = "text-only" if attention_type == "gated" else "text-image"
            self.position_net = PositionNet(
                positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
            )



        from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor

        attn_procs = {}
        for name in self.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = self.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(self.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = self.config.block_out_channels[block_id]
            if cross_attention_dim is None:
                attn_procs[name] = AttnProcessor()
            else:
                layer_name = name.split(".processor")[0]
                attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=16)
        self.set_attn_processor(attn_procs)


    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""

        Returns:

            `dict` of attention processors: A dictionary containing all attention processors used in the model with

            indexed by its weight name.

        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(

        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False

    ):
        r"""

        Sets the attention processor to use to compute attention.



        Parameters:

            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):

                The instantiated processor class or a dictionary of processor classes that will be set as the processor

                for **all** `Attention` layers.



                If `processor` is a dict, the key needs to define the path to the corresponding cross attention

                processor. This is strongly recommended when setting trainable attention processors.



        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor, _remove_lora=_remove_lora)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """

        Disables custom attention processors and sets the default attention implementation.

        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor, _remove_lora=True)

    def set_attention_slice(self, slice_size):
        r"""

        Enable sliced attention computation.



        When this option is enabled, the attention module splits the input tensor in slices to compute attention in

        several steps. This is useful for saving some memory in exchange for a small decrease in speed.



        Args:

            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):

                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If

                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is

                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`

                must be a multiple of `slice_size`.

        """
        sliceable_head_dims = []

        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
                fn_recursive_retrieve_sliceable_dims(child)

        # retrieve number of attention layers
        for module in self.children():
            fn_recursive_retrieve_sliceable_dims(module)

        num_sliceable_layers = len(sliceable_head_dims)

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
            slice_size = num_sliceable_layers * [1]

        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )

        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def enable_freeu(self, s1, s2, b1, b2):
        r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.



        The suffixes after the scaling factors represent the stage blocks where they are being applied.



        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that

        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.



        Args:

            s1 (`float`):

                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to

                mitigate the "oversmoothing effect" in the enhanced denoising process.

            s2 (`float`):

                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to

                mitigate the "oversmoothing effect" in the enhanced denoising process.

            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.

            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.

        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
                    setattr(upsample_block, k, None)

    def fuse_qkv_projections(self):
        """

        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,

        key, value) are fused. For cross-attention modules, key and value projection matrices are fused.



        <Tip warning={true}>



        This API is πŸ§ͺ experimental.



        </Tip>

        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.



        <Tip warning={true}>



        This API is πŸ§ͺ experimental.



        </Tip>



        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def forward(

        self,

        sample: torch.FloatTensor,

        timestep: Union[torch.Tensor, float, int],

        encoder_hidden_states: torch.Tensor,

        class_labels: Optional[torch.Tensor] = None,

        timestep_cond: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,

        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,

        mid_block_additional_residual: Optional[torch.Tensor] = None,

        down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,

        encoder_attention_mask: Optional[torch.Tensor] = None,

        return_dict: bool = True,

        garment_features: Optional[Tuple[torch.Tensor]] = None,

    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""

        The [`UNet2DConditionModel`] forward method.



        Args:

            sample (`torch.FloatTensor`):

                The noisy input tensor with the following shape `(batch, channel, height, width)`.

            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.

            encoder_hidden_states (`torch.FloatTensor`):

                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.

            class_labels (`torch.Tensor`, *optional*, defaults to `None`):

                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.

            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):

                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed

                through the `self.time_embedding` layer to obtain the timestep embeddings.

            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):

                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask

                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large

                negative values to the attention scores corresponding to "discard" tokens.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            added_cond_kwargs: (`dict`, *optional*):

                A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that

                are passed along to the UNet blocks.

            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):

                A tuple of tensors that if specified are added to the residuals of down unet blocks.

            mid_block_additional_residual: (`torch.Tensor`, *optional*):

                A tensor that if specified is added to the residual of the middle unet block.

            encoder_attention_mask (`torch.Tensor`):

                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If

                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,

                which adds large negative values to the attention scores corresponding to "discard" tokens.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain

                tuple.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].

            added_cond_kwargs: (`dict`, *optional*):

                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that

                are passed along to the UNet blocks.

            down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):

                additional residuals to be added to UNet long skip connections from down blocks to up blocks for

                example from ControlNet side model(s)

            mid_block_additional_residual (`torch.Tensor`, *optional*):

                additional residual to be added to UNet mid block output, for example from ControlNet side model

            down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):

                additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)



        Returns:

            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:

                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise

                a `tuple` is returned where the first element is the sample tensor.

        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        for dim in sample.shape[-2:]:
            if dim % default_overall_up_factor != 0:
                # Forward upsample size to force interpolation output size.
                forward_upsample_size = True
                break
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)
        aug_emb = None

        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb

        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
        elif self.config.addition_embed_type == "text_image":
            # Kandinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
        elif self.config.addition_embed_type == "text_time":
            # SDXL - style
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb, hint = self.add_embedding(image_embs, hint)
            sample = torch.cat([sample, hint], dim=1)

        emb = emb + aug_emb if aug_emb is not None else emb

        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            # print(image_embeds.shape)
            # image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
            encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)

        # 2. pre-process
        sample = self.conv_in(sample)

        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}


        curr_garment_feat_idx = 0


        # 3. down
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
        is_adapter = down_intrablock_additional_residuals is not None
        # maintain backward compatibility for legacy usage, where
        #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
        #       but can only use one or the other
        if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
            deprecate(
                "T2I should not use down_block_additional_residuals",
                "1.3.0",
                "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \

                       and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \

                       for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
                standard_warn=False,
            )
            down_intrablock_additional_residuals = down_block_additional_residuals
            is_adapter = True

        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)

                sample, res_samples,curr_garment_feat_idx = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                    garment_features=garment_features,
                    curr_garment_feat_idx=curr_garment_feat_idx,
                    **additional_residuals,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    sample += down_intrablock_additional_residuals.pop(0)

            down_block_res_samples += res_samples


        if is_controlnet:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
                sample ,curr_garment_feat_idx= self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                    garment_features=garment_features,
                    curr_garment_feat_idx=curr_garment_feat_idx,
                )
            else:
                sample = self.mid_block(sample, emb)

            # To support T2I-Adapter-XL
            if (
                is_adapter
                and len(down_intrablock_additional_residuals) > 0
                and sample.shape == down_intrablock_additional_residuals[0].shape
            ):
                sample += down_intrablock_additional_residuals.pop(0)

        if is_controlnet:
            sample = sample + mid_block_additional_residual



        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample ,curr_garment_feat_idx= upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    garment_features=garment_features,
                    curr_garment_feat_idx=curr_garment_feat_idx,
                )

            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    scale=lora_scale,
                )
        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample)