Spaces:
Build error
Build error
File size: 20,328 Bytes
c59ebda 50f2d4b c59ebda 50f2d4b 0558cbb 50f2d4b 0558cbb c59ebda 90afd57 50f2d4b 90afd57 50f2d4b 90afd57 c64d018 c59ebda 5d70a9c f61b4e0 134aae6 c59ebda 90afd57 c59ebda 90afd57 c59ebda 0558cbb c6d8cfb 0558cbb 5ede0fb 0558cbb c6d8cfb 5792077 c6d8cfb 0558cbb b3dcde3 c6d8cfb 5792077 c6d8cfb 0558cbb d44f5d8 0558cbb 90afd57 0558cbb 90afd57 c64d018 90afd57 0558cbb 90afd57 0558cbb 90afd57 0558cbb 90afd57 0558cbb 90afd57 0558cbb 90afd57 0558cbb c64d018 c6d8cfb 0558cbb c6d8cfb 0558cbb c6d8cfb 0558cbb c6d8cfb 0558cbb 3831b68 0558cbb c64d018 0558cbb 90afd57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import json
import logging
import os
from functools import lru_cache
from typing import List
from urllib.parse import unquote
import more_itertools
import pandas as pd
import requests
import streamlit as st
import wikipedia
from codetiming import Timer
from fuzzysearch import find_near_matches
from googleapi import google
from tqdm.auto import tqdm
from transformers import (
AutoTokenizer,
GPT2LMHeadModel,
GPT2Tokenizer,
pipeline,
set_seed,
)
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
from .preprocess import ArabertPreprocessor
from .sa_utils import *
from .utils import download_models, softmax
logger = logging.getLogger(__name__)
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
class TextGeneration:
def __init__(self):
self.debug = False
self.generation_pipline = {}
self.preprocessor = ArabertPreprocessor(model_name="aragpt2-mega")
self.tokenizer = GPT2Tokenizer.from_pretrained(
"aubmindlab/aragpt2-mega", use_fast=False
)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.API_KEY = os.getenv("API_KEY")
self.headers = {"Authorization": f"Bearer {self.API_KEY}"}
# self.model_names_or_paths = {
# "aragpt2-medium": "D:/ML/Models/aragpt2-medium",
# "aragpt2-base": "D:/ML/Models/aragpt2-base",
# }
self.model_names_or_paths = {
# "aragpt2-medium": "aubmindlab/aragpt2-medium",
"aragpt2-base": "aubmindlab/aragpt2-base",
# "aragpt2-large": "aubmindlab/aragpt2-large",
"aragpt2-mega": "aubmindlab/aragpt2-mega",
}
set_seed(42)
def load_pipeline(self):
for model_name, model_path in self.model_names_or_paths.items():
if "base" in model_name or "medium" in model_name:
self.generation_pipline[model_name] = pipeline(
"text-generation",
model=GPT2LMHeadModel.from_pretrained(model_path),
tokenizer=self.tokenizer,
device=-1,
)
else:
self.generation_pipline[model_name] = pipeline(
"text-generation",
model=GROVERLMHeadModel.from_pretrained(model_path),
tokenizer=self.tokenizer,
device=-1,
)
def load(self):
if not self.debug:
self.load_pipeline()
def generate(
self,
model_name,
prompt,
max_new_tokens: int,
temperature: float,
top_k: int,
top_p: float,
repetition_penalty: float,
no_repeat_ngram_size: int,
do_sample: bool,
num_beams: int,
):
logger.info(f"Generating with {model_name}")
prompt = self.preprocessor.preprocess(prompt)
return_full_text = False
return_text = True
num_return_sequences = 1
pad_token_id = 0
eos_token_id = 0
input_tok = self.tokenizer.tokenize(prompt)
max_length = len(input_tok) + max_new_tokens
if max_length > 1024:
max_length = 1024
if not self.debug:
generated_text = self.generation_pipline[model_name.lower()](
prompt,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
return_full_text=return_full_text,
return_text=return_text,
do_sample=do_sample,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
)[0]["generated_text"]
else:
generated_text = self.generate_by_query(
prompt,
model_name,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
return_full_text=return_full_text,
return_text=return_text,
do_sample=do_sample,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
)
# print(generated_text)
if isinstance(generated_text, dict):
if "error" in generated_text:
if "is currently loading" in generated_text["error"]:
return f"Model is currently loading, estimated time is {generated_text['estimated_time']}"
return generated_text["error"]
else:
return "Something happened 🤷♂️!!"
else:
generated_text = generated_text[0]["generated_text"]
logger.info(f"Prompt: {prompt}")
logger.info(f"Generated text: {generated_text}")
return self.preprocessor.unpreprocess(generated_text)
def query(self, payload, model_name):
data = json.dumps(payload)
url = (
"https://api-inference.huggingface.co/models/aubmindlab/"
+ model_name.lower()
)
response = requests.request("POST", url, headers=self.headers, data=data)
return json.loads(response.content.decode("utf-8"))
def generate_by_query(
self,
prompt: str,
model_name: str,
max_length: int,
temperature: float,
top_k: int,
top_p: float,
repetition_penalty: float,
no_repeat_ngram_size: int,
pad_token_id: int,
eos_token_id: int,
return_full_text: int,
return_text: int,
do_sample: bool,
num_beams: int,
num_return_sequences: int,
):
payload = {
"inputs": prompt,
"parameters": {
"max_length ": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"no_repeat_ngram_size": no_repeat_ngram_size,
"pad_token_id": pad_token_id,
"eos_token_id": eos_token_id,
"return_full_text": return_full_text,
"return_text": return_text,
"pad_token_id": pad_token_id,
"do_sample": do_sample,
"num_beams": num_beams,
"num_return_sequences": num_return_sequences,
},
"options": {
"use_cache": True,
},
}
return self.query(payload, model_name)
class SentimentAnalyzer:
def __init__(self):
self.sa_models = [
"sa_trial5_1",
# "sa_no_aoa_in_neutral",
# "sa_cnnbert",
# "sa_sarcasm",
# "sar_trial10",
# "sa_no_AOA",
]
download_models(self.sa_models)
# fmt: off
self.processors = {
"sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
# "sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
# "sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
# "sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
# "sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
# "sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
}
self.pipelines = {
"sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_trial5_1")],
# "sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_aoa_in_neutral")],
# "sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_cnnbert")],
# "sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_sarcasm",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_sarcasm")],
# "sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sar_trial10")],
# "sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_AOA")],
}
# fmt: on
def get_preds_from_sarcasm(self, texts):
prep = self.processors["sar_trial10"]
prep_texts = [prep.preprocess(x) for x in texts]
preds_df = pd.DataFrame([])
for i in range(0, 5):
preds = []
for s in more_itertools.chunked(list(prep_texts), 128):
preds.extend(self.pipelines["sar_trial10"][i](s))
preds_df[f"model_{i}"] = preds
final_labels = []
final_scores = []
for id, row in preds_df.iterrows():
pos_total = 0
neu_total = 0
for pred in row[:]:
pos_total += pred[0]["score"]
neu_total += pred[1]["score"]
pos_avg = pos_total / len(row[:])
neu_avg = neu_total / len(row[:])
final_labels.append(
self.pipelines["sar_trial10"][0].model.config.id2label[
np.argmax([pos_avg, neu_avg])
]
)
final_scores.append(np.max([pos_avg, neu_avg]))
return final_labels, final_scores
def get_preds_from_a_model(self, texts: List[str], model_name):
try:
prep = self.processors[model_name]
prep_texts = [prep.preprocess(x) for x in texts]
if model_name == "sa_sarcasm":
sarcasm_label, _ = self.get_preds_from_sarcasm(texts)
sarcastic_map = {"Not_Sarcastic": "غير ساخر", "Sarcastic": "ساخر"}
labeled_prep_texts = []
for t, l in zip(prep_texts, sarcasm_label):
labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t)
preds_df = pd.DataFrame([])
for i in range(0, 5):
preds = []
for s in more_itertools.chunked(list(prep_texts), 128):
preds.extend(self.pipelines[model_name][i](s))
preds_df[f"model_{i}"] = preds
final_labels = []
final_scores = []
final_scores_list = []
for id, row in preds_df.iterrows():
pos_total = 0
neg_total = 0
neu_total = 0
for pred in row[2:]:
pos_total += pred[0]["score"]
neu_total += pred[1]["score"]
neg_total += pred[2]["score"]
pos_avg = pos_total / 5
neu_avg = neu_total / 5
neg_avg = neg_total / 5
if model_name == "sa_no_aoa_in_neutral":
final_labels.append(
self.pipelines[model_name][0].model.config.id2label[
np.argmax([neu_avg, neg_avg, pos_avg])
]
)
else:
final_labels.append(
self.pipelines[model_name][0].model.config.id2label[
np.argmax([pos_avg, neu_avg, neg_avg])
]
)
final_scores.append(np.max([pos_avg, neu_avg, neg_avg]))
final_scores_list.append((pos_avg, neu_avg, neg_avg))
except RuntimeError as e:
if model_name == "sa_cnnbert":
return (
["Neutral"] * len(texts),
[0.0] * len(texts),
[(0.0, 0.0, 0.0)] * len(texts),
)
else:
raise RuntimeError(e)
return final_labels, final_scores, final_scores_list
def predict(self, texts: List[str]):
logger.info(f"Predicting for: {texts}")
# (
# new_balanced_label,
# new_balanced_score,
# new_balanced_score_list,
# ) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral")
# (
# cnn_marbert_label,
# cnn_marbert_score,
# cnn_marbert_score_list,
# ) = self.get_preds_from_a_model(texts, "sa_cnnbert")
trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model(
texts, "sa_trial5_1"
)
# no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model(
# texts, "sa_no_AOA"
# )
# sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model(
# texts, "sa_sarcasm"
# )
id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"}
final_ensemble_prediction = []
final_ensemble_score = []
final_ensemble_all_score = []
for entry in zip(
# new_balanced_score_list,
# cnn_marbert_score_list,
trial5_score_list,
# no_aoa_score_list,
# sarcasm_score_list,
):
pos_score = 0
neu_score = 0
neg_score = 0
for s in entry:
pos_score += s[0] * 1.57
neu_score += s[1] * 0.98
neg_score += s[2] * 0.93
# weighted 2
# pos_score += s[0]*1.67
# neu_score += s[1]
# neg_score += s[2]*0.95
final_ensemble_prediction.append(
id_label_map[np.argmax([pos_score, neu_score, neg_score])]
)
final_ensemble_score.append(np.max([pos_score, neu_score, neg_score]))
final_ensemble_all_score.append(
softmax(np.array([pos_score, neu_score, neg_score])).tolist()
)
logger.info(f"Result: {final_ensemble_prediction}")
logger.info(f"Score: {final_ensemble_score}")
logger.info(f"All Scores: {final_ensemble_all_score}")
return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score
wikipedia.set_lang("ar")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
preprocessor = ArabertPreprocessor("wissamantoun/araelectra-base-artydiqa")
logger.info("Loading QA Pipeline...")
tokenizer = AutoTokenizer.from_pretrained("wissamantoun/araelectra-base-artydiqa")
qa_pipe = pipeline("question-answering", model="wissamantoun/araelectra-base-artydiqa")
logger.info("Finished loading QA Pipeline...")
@lru_cache(maxsize=100)
def get_qa_answers(question):
logger.info("\n=================================================================")
logger.info(f"Question: {question}")
if "وسام أنطون" in question or "wissam antoun" in question.lower():
return {
"title": "Creator",
"results": [
{
"score": 1.0,
"new_start": 0,
"new_end": 12,
"new_answer": "My Creator 😜",
"original": "My Creator 😜",
"link": "https://github.com/WissamAntoun/",
}
],
}
search_timer = Timer(
"search and wiki", text="Search and Wikipedia Time: {:.2f}", logger=logging.info
)
try:
search_timer.start()
search_results = google.search(
question + " site:ar.wikipedia.org", lang="ar", area="ar"
)
if len(search_results) == 0:
return {}
page_name = search_results[0].link.split("wiki/")[-1]
wiki_page = wikipedia.page(unquote(page_name))
wiki_page_content = wiki_page.content
search_timer.stop()
except:
return {}
sections = []
for section in re.split("== .+ ==[^=]", wiki_page_content):
if not section.isspace():
prep_section = tokenizer.tokenize(preprocessor.preprocess(section))
if len(prep_section) > 500:
subsections = []
for subsection in re.split("=== .+ ===", section):
if subsection.isspace():
continue
prep_subsection = tokenizer.tokenize(
preprocessor.preprocess(subsection)
)
subsections.append(subsection)
# logger.info(f"Subsection found with length: {len(prep_subsection)}")
sections.extend(subsections)
else:
# logger.info(f"Regular Section with length: {len(prep_section)}")
sections.append(section)
full_len_sections = []
temp_section = ""
for section in sections:
if (
len(tokenizer.tokenize(preprocessor.preprocess(temp_section)))
+ len(tokenizer.tokenize(preprocessor.preprocess(section)))
> 384
):
if temp_section == "":
temp_section = section
continue
full_len_sections.append(temp_section)
# logger.info(
# f"full section length: {len(tokenizer.tokenize(preprocessor.preprocess(temp_section)))}"
# )
temp_section = ""
else:
temp_section += " " + section + " "
if temp_section != "":
full_len_sections.append(temp_section)
reader_time = Timer("electra", text="Reader Time: {:.2f}", logger=logging.info)
reader_time.start()
results = qa_pipe(
question=[preprocessor.preprocess(question)] * len(full_len_sections),
context=[preprocessor.preprocess(x) for x in full_len_sections],
)
if not isinstance(results, list):
results = [results]
logger.info(f"Wiki Title: {unquote(page_name)}")
logger.info(f"Total Sections: {len(sections)}")
logger.info(f"Total Full Sections: {len(full_len_sections)}")
for result, section in zip(results, full_len_sections):
result["original"] = section
answer_match = find_near_matches(
" " + preprocessor.unpreprocess(result["answer"]) + " ",
result["original"],
max_l_dist=min(5, len(preprocessor.unpreprocess(result["answer"])) // 2),
max_deletions=0,
)
try:
result["new_start"] = answer_match[0].start
result["new_end"] = answer_match[0].end
result["new_answer"] = answer_match[0].matched
result["link"] = (
search_results[0].link + "#:~:text=" + result["new_answer"].strip()
)
except:
result["new_start"] = result["start"]
result["new_end"] = result["end"]
result["new_answer"] = result["answer"]
result["original"] = preprocessor.preprocess(result["original"])
result["link"] = search_results[0].link
logger.info(f"Answers: {preprocessor.preprocess(result['new_answer'])}")
sorted_results = sorted(results, reverse=True, key=lambda x: x["score"])
return_dict = {}
return_dict["title"] = unquote(page_name)
return_dict["results"] = sorted_results
reader_time.stop()
logger.info(f"Total time spent: {reader_time.last + search_timer.last}")
return return_dict
|