Spaces:
Build error
Build error
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
PyTorch OpenAI GPT-2 model. | |
Adapted from https://github.com/huggingface/transformers/blob/v4.0.1/src/transformers/models/gpt2/modeling_gpt2.py | |
and https://github.com/ghosthamlet/gpt2-ml-torch/blob/master/gpt2_ml_torch/modeling_gpt2.py | |
""" | |
import logging | |
import os | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from transformers import CONFIG_NAME, WEIGHTS_NAME, GPT2Config, GPT2Model | |
from transformers.activations import ACT2FN | |
from transformers.file_utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import ( | |
Conv1D, | |
PreTrainedModel, | |
SequenceSummary, | |
find_pruneable_heads_and_indices, | |
prune_conv1d_layer, | |
) | |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
# THe Difference from Transformers is code under _USE_GROVER | |
_USE_GROVER = True | |
logger = logging.getLogger(__name__) | |
_CONFIG_FOR_DOC = "GPT2Config" | |
_TOKENIZER_FOR_DOC = "GPT2Tokenizer" | |
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"gpt2", | |
"gpt2-medium", | |
"gpt2-large", | |
"gpt2-xl", | |
"distilgpt2", | |
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2 | |
] | |
logger.setLevel(logging.INFO) | |
console = logging.StreamHandler() | |
console.setLevel(logging.INFO) | |
logger.addHandler(console) | |
_GPT2_ML_TF_TO_TORCH = { | |
"LayerNorm_embed_norm": "emb_norm", | |
"pos_embed": "wpe.weight", | |
"word_embed": "wte.weight", | |
"layer": "h", | |
# Most importently This two layer norm must be put on the same position as gpt2-ml | |
# or generated data is bad, just repeat the last token | |
"LayerNorm_mlp_ln0": "ln_1", | |
"LayerNorm_mlp_ln1": "ln_2", | |
"intermediate": "mlp.c_fc", | |
"output": "mlp.c_proj", | |
"query_layer": "attn.c_attn", | |
"key_layer": "attn.c_attn", | |
"value_layer": "attn.c_attn", | |
"context_projection_layer": "attn.c_proj", | |
"gamma": "weight", | |
"kernel": "weight", | |
"beta": "bias", | |
"bias": "bias", | |
} | |
def convert_gpt2_checkpoint_to_pytorch( | |
gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path | |
): | |
# Construct model | |
if gpt2_config_file == "": | |
config = GPT2Config() | |
else: | |
config = GPT2Config.from_json_file(gpt2_config_file) | |
model = GPT2Model(config) | |
# Load weights from numpy | |
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path) | |
# Save pytorch-model | |
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME | |
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME | |
print("Save PyTorch model to {}".format(pytorch_weights_dump_path)) | |
torch.save(model.state_dict(), pytorch_weights_dump_path) | |
print("Save configuration file to {}".format(pytorch_config_dump_path)) | |
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: | |
f.write(config.to_json_string()) | |
# XXX: MUST do like: convert_gpt2_checkpoint_to_pytorch('./model.ckpt-100000', './mega.json', './') | |
# https://github.com/tensorflow/models/issues/2675#issuecomment-516595597 | |
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model""" | |
try: | |
import re | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(gpt2_checkpoint_path) | |
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array.squeeze()) | |
import copy | |
orig_model = copy.deepcopy(model) | |
for name, array in zip(names, arrays): | |
name = name[6:] # skip "model/" | |
name = name.split("/") | |
pointer = model | |
attn_layer = "" | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+\d+", m_name): | |
scope_names = re.split(r"(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
sname = scope_names[0] | |
if sname == "" or sname == "embeddings": | |
continue | |
elif sname not in _GPT2_ML_TF_TO_TORCH: | |
print("=========================================================") | |
logger.info("Skip var name {}".format(scope_names)) | |
pointer = None | |
break | |
else: | |
tname = _GPT2_ML_TF_TO_TORCH[sname] | |
if "." in tname: | |
parent, child = tname.split(".") | |
pointer = getattr(pointer, parent) | |
pointer = getattr(pointer, child) | |
else: | |
pointer = getattr(pointer, tname) | |
if tname == "attn.c_attn": | |
attn_layer = sname | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if pointer is None: | |
continue | |
if attn_layer == "": | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info( | |
"Initialize PyTorch weight {}, {}, {}".format( | |
name, array.mean(), pointer.mean() | |
) | |
) | |
if attn_layer == "": | |
pointer.data = torch.from_numpy(array) | |
else: | |
shape = pointer.shape | |
d = torch.from_numpy(array) | |
is_bias = len(shape) == 1 | |
end = int(shape[0 if is_bias else 1] / 3) | |
m = dict( | |
query_layer=0, | |
key_layer=end, | |
value_layer=end * 2, | |
) | |
start = m[attn_layer] | |
end = start + end | |
if is_bias: | |
pointer.data[start:end] = d | |
else: | |
pointer.data[:, start:end] = d | |
logger.info( | |
"Initialize PyTorch weight {}, {}, {}".format( | |
name, array.mean(), pointer.mean() | |
) | |
) | |
for name, params in orig_model.named_parameters(): | |
for n, p in model.named_parameters(): | |
if name == n: | |
if params.equal(p): | |
print("--------------------------") | |
print(" %s not changed!" % n) | |
return model | |
class Attention(nn.Module): | |
def __init__(self, nx, n_ctx, config, scale=False, is_cross_attention=False): | |
super().__init__() | |
n_state = nx # in Attention: n_state=768 (nx=n_embd) | |
# [switch nx => n_state from Block to Attention to keep identical to TF implem] | |
assert n_state % config.n_head == 0 | |
self.register_buffer( | |
"bias", | |
torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view( | |
1, 1, n_ctx, n_ctx | |
), | |
) | |
self.register_buffer("masked_bias", torch.tensor(-1e4)) | |
self.n_head = config.n_head | |
self.split_size = n_state | |
self.scale = scale | |
self.is_cross_attention = is_cross_attention | |
if self.is_cross_attention: | |
self.c_attn = Conv1D(2 * n_state, nx) | |
self.q_attn = Conv1D(n_state, nx) | |
else: | |
self.c_attn = Conv1D(3 * n_state, nx) | |
self.c_proj = Conv1D(n_state, nx) | |
self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads | |
) | |
index_attn = torch.cat( | |
[index, index + self.split_size, index + (2 * self.split_size)] | |
) | |
# Prune conv1d layers | |
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) | |
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) | |
# Update hyper params | |
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) | |
self.n_head = self.n_head - len(heads) | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _attn( | |
self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False | |
): | |
w = torch.matmul(q, k) | |
if self.scale: | |
w = w / (float(v.size(-1)) ** 0.5) | |
nd, ns = w.size(-2), w.size(-1) | |
if not self.is_cross_attention: | |
# if only "normal" attention layer implements causal mask | |
mask = self.bias[:, :, ns - nd : ns, :ns] | |
w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype)) | |
if attention_mask is not None: | |
# Apply the attention mask | |
w = w + attention_mask | |
w = nn.Softmax(dim=-1)(w) | |
w = self.attn_dropout(w) | |
# Mask heads if we want to | |
if head_mask is not None: | |
w = w * head_mask | |
outputs = [torch.matmul(w, v)] | |
if output_attentions: | |
outputs.append(w) | |
return outputs | |
def merge_heads(self, x): | |
x = x.permute(0, 2, 1, 3).contiguous() | |
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) | |
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states | |
def split_heads(self, x, k=False): | |
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) | |
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states | |
if k: | |
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) | |
else: | |
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
def forward( | |
self, | |
hidden_states, | |
layer_past=None, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
if encoder_hidden_states is not None: | |
assert hasattr( | |
self, "q_attn" | |
), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`." | |
query = self.q_attn(hidden_states) | |
key, value = self.c_attn(encoder_hidden_states).split( | |
self.split_size, dim=2 | |
) | |
attention_mask = encoder_attention_mask | |
else: | |
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) | |
query = self.split_heads(query) | |
key = self.split_heads(key, k=True) | |
value = self.split_heads(value) | |
if layer_past is not None: | |
past_key, past_value = ( | |
layer_past[0].transpose(-2, -1), | |
layer_past[1], | |
) # transpose back cf below | |
key = torch.cat((past_key, key), dim=-1) | |
value = torch.cat((past_value, value), dim=-2) | |
if use_cache is True: | |
present = torch.stack( | |
(key.transpose(-2, -1), value) | |
) # transpose to have same shapes for stacking | |
else: | |
present = (None,) | |
attn_outputs = self._attn( | |
query, key, value, attention_mask, head_mask, output_attentions | |
) | |
a = attn_outputs[0] | |
a = self.merge_heads(a) | |
a = self.c_proj(a) | |
a = self.resid_dropout(a) | |
outputs = [a, present] + attn_outputs[1:] | |
return outputs # a, present, (attentions) | |
class MLP(nn.Module): | |
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) | |
super().__init__() | |
nx = config.n_embd | |
self.c_fc = Conv1D(n_state, nx) | |
self.c_proj = Conv1D(nx, n_state) | |
self.act = ACT2FN[config.activation_function] | |
self.dropout = nn.Dropout(config.resid_pdrop) | |
def forward(self, x): | |
h = self.act(self.c_fc(x)) | |
h2 = self.c_proj(h) | |
return self.dropout(h2) | |
class Block(nn.Module): | |
def __init__(self, n_ctx, config, scale=False): | |
super().__init__() | |
hidden_size = config.n_embd | |
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size | |
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.attn = Attention(hidden_size, n_ctx, config, scale) | |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
if config.add_cross_attention: | |
self.crossattention = Attention( | |
hidden_size, n_ctx, config, scale, is_cross_attention=True | |
) | |
self.ln_cross_attn = nn.LayerNorm( | |
hidden_size, eps=config.layer_norm_epsilon | |
) | |
self.mlp = MLP(inner_dim, config) | |
def forward( | |
self, | |
hidden_states, | |
layer_past=None, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
attn_outputs = self.attn( | |
hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
attn_output = attn_outputs[0] # output_attn: a, present, (attentions) | |
outputs = attn_outputs[1:] | |
# residual connection | |
hidden_states = attn_output + hidden_states | |
if encoder_hidden_states is not None: | |
# add one self-attention block for cross-attention | |
assert hasattr( | |
self, "crossattention" | |
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" | |
cross_attn_outputs = self.crossattention( | |
self.ln_cross_attn(hidden_states), | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
output_attentions=output_attentions, | |
) | |
attn_output = cross_attn_outputs[0] | |
# residual connection | |
hidden_states = hidden_states + attn_output | |
outputs = ( | |
outputs + cross_attn_outputs[2:] | |
) # add cross attentions if we output attention weights | |
feed_forward_hidden_states = self.mlp(self.ln_1(hidden_states)) | |
# residual connection | |
hidden_states = hidden_states + feed_forward_hidden_states | |
hidden_states = self.ln_2(hidden_states) | |
outputs = [hidden_states] + outputs | |
return outputs # hidden_states, present, (attentions, cross_attentions) | |
class GPT2PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = GPT2Config | |
load_tf_weights = load_tf_weights_in_gpt2 | |
base_model_prefix = "transformer" | |
is_parallelizable = True | |
def __init__(self, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class GPT2DoubleHeadsModelOutput(ModelOutput): | |
""" | |
Base class for outputs of models predicting if two sentences are consecutive or not. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided): | |
Language modeling loss. | |
mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided): | |
Multiple choice classification loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): | |
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). | |
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, | |
batch_size, num_heads, sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see | |
:obj:`past_key_values` input) to speed up sequential decoding. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
mc_loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
mc_logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
GPT2_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
GPT2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`): | |
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else | |
``past_key_values[0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input | |
sequence tokens in the vocabulary. | |
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be | |
passed as ``input_ids``. | |
Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
past_key_values (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`): | |
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which | |
have their past given to this model should not be passed as ``input_ids`` as they have already been | |
computed. | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see | |
:obj:`past_key_values`). | |
use_cache (:obj:`bool`, `optional`): | |
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
decoding (see :obj:`past_key_values`). | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
PARALLELIZE_DOCSTRING = r""" | |
This is an experimental feature and is a subject to change at a moment's notice. | |
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | |
it will evenly distribute blocks across all devices. | |
Args: | |
device_map (:obj:`Dict[int, list]`, optional, defaults to None): | |
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | |
automatically mapped to the first device (for esoteric reasons). That means that the first device should | |
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the | |
following number of attention modules: | |
- gpt2: 12 | |
- gpt2-medium: 24 | |
- gpt2-large: 36 | |
- gpt2-xl: 48 | |
Example:: | |
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules: | |
model = GPT2LMHeadModel.from_pretrained('gpt2-xl') | |
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7, 8], | |
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], | |
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], | |
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]} | |
model.parallelize(device_map) | |
""" | |
DEPARALLELIZE_DOCSTRING = r""" | |
Moves the model to cpu from a model parallel state. | |
Example:: | |
# On a 4 GPU machine with gpt2-large: | |
model = GPT2LMHeadModel.from_pretrained('gpt2-large') | |
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7], | |
1: [8, 9, 10, 11, 12, 13, 14, 15], | |
2: [16, 17, 18, 19, 20, 21, 22, 23], | |
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]} | |
model.parallelize(device_map) # Splits the model across several devices | |
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | |
""" | |
class GPT2Model(GPT2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.wte = nn.Embedding(config.vocab_size, config.n_embd) | |
self.wpe = nn.Embedding(config.n_positions, config.n_embd) | |
if _USE_GROVER: | |
self.emb_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
self.h = nn.ModuleList( | |
[Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)] | |
) | |
if not _USE_GROVER: | |
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def parallelize(self, device_map=None): | |
# Check validity of device_map | |
self.device_map = ( | |
get_device_map(len(self.h), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.h)) | |
self.model_parallel = True | |
self.first_device = ( | |
"cpu" | |
if "cpu" in self.device_map.keys() | |
else "cuda:" + str(min(self.device_map.keys())) | |
) | |
self.last_device = "cuda:" + str(max(self.device_map.keys())) | |
self.wte = self.wte.to(self.first_device) | |
self.wpe = self.wpe.to(self.first_device) | |
# Load onto devices | |
for k, v in self.device_map.items(): | |
for block in v: | |
cuda_device = "cuda:" + str(k) | |
self.h[block] = self.h[block].to(cuda_device) | |
# ln_f to last | |
self.ln_f = self.ln_f.to(self.last_device) | |
def deparallelize(self): | |
self.model_parallel = False | |
self.device_map = None | |
self.first_device = "cpu" | |
self.last_device = "cpu" | |
self.wte = self.wte.to("cpu") | |
self.wpe = self.wpe.to("cpu") | |
for index in range(len(self.h)): | |
self.h[index] = self.h[index].to("cpu") | |
self.ln_f = self.ln_f.to("cpu") | |
torch.cuda.empty_cache() | |
def get_input_embeddings(self): | |
return self.wte | |
def set_input_embeddings(self, new_embeddings): | |
self.wte = new_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.h[layer].attn.prune_heads(heads) | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
batch_size = input_ids.shape[0] | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
batch_size = inputs_embeds.shape[0] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
if position_ids is not None: | |
position_ids = position_ids.view(-1, input_shape[-1]) | |
if past_key_values is None: | |
past_length = 0 | |
past_key_values = [None] * len(self.h) | |
else: | |
past_length = past_key_values[0][0].size(-2) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_length, | |
input_shape[-1] + past_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | |
# Attention mask. | |
if attention_mask is not None: | |
if batch_size <= 0: | |
raise ValueError("batch_size has to be defined and > 0") | |
attention_mask = attention_mask.view(batch_size, -1) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
attention_mask = attention_mask[:, None, None, :] | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
attention_mask = (1.0 - attention_mask) * -10000.0 | |
# If a 2D ou 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.add_cross_attention and encoder_hidden_states is not None: | |
( | |
encoder_batch_size, | |
encoder_sequence_length, | |
_, | |
) = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# head_mask has shape n_layer x batch x n_heads x N x N | |
head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
if inputs_embeds is None: | |
inputs_embeds = self.wte(input_ids) | |
position_embeds = self.wpe(position_ids) | |
hidden_states = inputs_embeds + position_embeds | |
if token_type_ids is not None: | |
token_type_embeds = self.wte(token_type_ids) | |
hidden_states = hidden_states + token_type_embeds | |
hidden_states = self.drop(hidden_states) | |
if _USE_GROVER: | |
hidden_states = self.emb_norm(hidden_states) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = ( | |
() if output_attentions and self.config.add_cross_attention else None | |
) | |
all_hidden_states = () if output_hidden_states else None | |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
# Model parallel | |
if self.model_parallel: | |
torch.cuda.set_device(hidden_states.device) | |
# Ensure layer_past is on same device as hidden_states (might not be correct) | |
if layer_past is not None: | |
layer_past = tuple( | |
past_state.to(hidden_states.device) for past_state in layer_past | |
) | |
# Ensure that attention_mask is always on the same device as hidden_states | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(hidden_states.device) | |
if isinstance(head_mask, torch.Tensor): | |
head_mask = head_mask.to(hidden_states.device) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + ( | |
hidden_states.view(*output_shape), | |
) | |
if getattr(self.config, "gradient_checkpointing", False): | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# checkpointing only works with tuple returns, not with lists | |
return tuple( | |
output | |
for output in module(*inputs, use_cache, output_attentions) | |
) | |
return custom_forward | |
outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
layer_past, | |
attention_mask, | |
head_mask[i], | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
outputs = block( | |
hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask[i], | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states, present = outputs[:2] | |
if use_cache is True: | |
presents = presents + (present,) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + ( | |
outputs[2 if use_cache else 1], | |
) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + ( | |
outputs[3 if use_cache else 2], | |
) | |
# Model Parallel: If it's the last layer for that device, put things on the next device | |
if self.model_parallel: | |
for k, v in self.device_map.items(): | |
if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
if not _USE_GROVER: | |
hidden_states = self.ln_f(hidden_states) | |
hidden_states = hidden_states.view(*output_shape) | |
# Add last hidden state | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
presents, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class GPT2LMHeadModel(GPT2PreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = GPT2Model(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def parallelize(self, device_map=None): | |
self.device_map = ( | |
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.transformer.h)) | |
self.transformer.parallelize(self.device_map) | |
self.lm_head = self.lm_head.to(self.transformer.first_device) | |
self.model_parallel = True | |
def deparallelize(self): | |
self.transformer.deparallelize() | |
self.transformer = self.transformer.to("cpu") | |
self.lm_head = self.lm_head.to("cpu") | |
self.model_parallel = False | |
torch.cuda.empty_cache() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
token_type_ids = kwargs.get("token_type_ids", None) | |
# only last token for inputs_ids if past is defined in kwargs | |
if past: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
else: | |
position_ids = None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
} | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to | |
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.transformer.first_device) | |
hidden_states = hidden_states.to(self.lm_head.weight.device) | |
lm_logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) | |
) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
cross_attentions=transformer_outputs.cross_attentions, | |
) | |
def _reorder_cache( | |
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the :obj:`past_key_values` cache if | |
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is | |
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past | |
) | |
for layer_past in past | |
) | |
class GPT2DoubleHeadsModel(GPT2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
config.num_labels = 1 | |
self.transformer = GPT2Model(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.multiple_choice_head = SequenceSummary(config) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def parallelize(self, device_map=None): | |
self.device_map = ( | |
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.transformer.h)) | |
self.transformer.parallelize(self.device_map) | |
self.lm_head = self.lm_head.to(self.transformer.first_device) | |
self.multiple_choice_head = self.multiple_choice_head.to( | |
self.transformer.first_device | |
) | |
self.model_parallel = True | |
def deparallelize(self): | |
self.transformer.deparallelize() | |
self.transformer = self.transformer.to("cpu") | |
self.lm_head = self.lm_head.to("cpu") | |
self.multiple_choice_head = self.multiple_choice_head.to("cpu") | |
self.model_parallel = False | |
torch.cuda.empty_cache() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
token_type_ids = kwargs.get("token_type_ids", None) | |
# only last token for inputs_ids if past is defined in kwargs | |
if past: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
else: | |
position_ids = None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
} | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
mc_token_ids=None, | |
labels=None, | |
mc_labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
**kwargs, | |
): | |
r""" | |
mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input): | |
Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - | |
1[``. | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
``labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to | |
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` | |
mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`): | |
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see | |
`input_ids` above) | |
Return: | |
Example:: | |
>>> import torch | |
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel | |
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2') | |
>>> # Add a [CLS] to the vocabulary (we should train it also!) | |
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'}) | |
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size | |
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] | |
>>> encoded_choices = [tokenizer.encode(s) for s in choices] | |
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] | |
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 | |
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 | |
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids) | |
>>> lm_logits = outputs.lm_logits | |
>>> mc_logits = outputs.mc_logits | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.transformer.first_device) | |
hidden_states = hidden_states.to(self.lm_head.weight.device) | |
lm_logits = self.lm_head(hidden_states) | |
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) | |
mc_loss = None | |
if mc_labels is not None: | |
loss_fct = CrossEntropyLoss() | |
mc_loss = loss_fct( | |
mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1) | |
) | |
lm_loss = None | |
if labels is not None: | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
loss_fct = CrossEntropyLoss() | |
lm_loss = loss_fct( | |
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) | |
) | |
if not return_dict: | |
output = (lm_logits, mc_logits) + transformer_outputs[1:] | |
if mc_loss is not None: | |
output = (mc_loss,) + output | |
return ((lm_loss,) + output) if lm_loss is not None else output | |
return GPT2DoubleHeadsModelOutput( | |
loss=lm_loss, | |
mc_loss=mc_loss, | |
logits=lm_logits, | |
mc_logits=mc_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache( | |
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the :obj:`past_key_values` cache if | |
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is | |
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past | |
) | |
for layer_past in past | |
) | |
class GPT2ForSequenceClassification(GPT2PreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = GPT2Model(config) | |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size, sequence_length = input_ids.shape[:2] | |
else: | |
batch_size, sequence_length = inputs_embeds.shape[:2] | |
assert ( | |
self.config.pad_token_id is not None or batch_size == 1 | |
), "Cannot handle batch sizes > 1 if no padding token is defined." | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = ( | |
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 | |
) | |
else: | |
sequence_lengths = -1 | |
logger.warning( | |
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
) | |
pooled_logits = logits[range(batch_size), sequence_lengths] | |
loss = None | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
pooled_logits.view(-1, self.num_labels), labels.view(-1) | |
) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class GPT2ForTokenClassification(GPT2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = GPT2Model(config) | |
if ( | |
hasattr(config, "classifier_dropout") | |
and config.classifier_dropout is not None | |
): | |
classifier_dropout = config.classifier_dropout | |
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
classifier_dropout = config.hidden_dropout | |
else: | |
classifier_dropout = 0.1 | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, | |
labels.view(-1), | |
torch.tensor(loss_fct.ignore_index).type_as(labels), | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + transformer_outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |