from tensorflow import keras from PIL import Image, ImageOps import numpy as np import io, os import logging import keras_metrics from tensorflow import keras import utils ## Configs keras.utils.get_custom_objects()['recall'] = utils.recall keras.utils.get_custom_objects()['precision'] = utils.precision keras.utils.get_custom_objects()['f1'] = utils.f1 def teachable_machine_classification(img=None, model=None): """Performs inference on image uploaded""" # Create the array of the right shape to feed into the keras model data = np.ndarray(shape=(1, 299, 299, 3), dtype=np.float32) image = img # image sizing size = (299, 299) image = ImageOps.fit(image, size, Image.ANTIALIAS) # turn the image into a numpy array image_array = np.asarray(image) # Normalize the image normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 # Load the image into the array data[0] = normalized_image_array # run the inference prediction = model.predict(data) print("Prediction", prediction) return prediction[0][ 1 ] # np.argmax(prediction) # return position of the highest probability def load_model(weights_file=None): """Loads trained keras model""" dependencies = { "binary_f1_score": keras_metrics.binary_f1_score, "binary_precision": keras_metrics.binary_precision, "binary_recall": keras_metrics.binary_recall, } try: assert os.path.exists(weights_file), f"File '{weights_file}' does not exist" # Load the model model = keras.models.load_model( weights_file, custom_objects=dependencies, compile=False ) return model except Exception as e: logging.error("ERROR: ", e) print("ERROR: ", e, " Failed to load ML model") return None