Spaces:
Runtime error
Runtime error
aus10powell
commited on
Commit
•
2a3e5e3
1
Parent(s):
33d6c4f
Update scripts/sentiment.py
Browse files- scripts/sentiment.py +84 -19
scripts/sentiment.py
CHANGED
@@ -3,7 +3,9 @@ import nltk
|
|
3 |
from typing import List
|
4 |
from transformers import pipeline
|
5 |
from tqdm import tqdm
|
6 |
-
|
|
|
|
|
7 |
|
8 |
def tweet_cleaner(tweet: str) -> str:
|
9 |
# words = set(nltk.corpus.words.words())
|
@@ -68,30 +70,93 @@ def fix_text(text):
|
|
68 |
return text
|
69 |
|
70 |
|
71 |
-
def
|
|
|
|
|
72 |
"""
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
Returns:
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
"""
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
"sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english"
|
85 |
-
)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from typing import List
|
4 |
from transformers import pipeline
|
5 |
from tqdm import tqdm
|
6 |
+
import numpy as np
|
7 |
+
import numpy as np
|
8 |
+
import scipy
|
9 |
|
10 |
def tweet_cleaner(tweet: str) -> str:
|
11 |
# words = set(nltk.corpus.words.words())
|
|
|
70 |
return text
|
71 |
|
72 |
|
73 |
+
def twitter_sentiment_api_score(
|
74 |
+
tweet_list: list = None, return_argmax: bool = True, use_api=False
|
75 |
+
):
|
76 |
"""
|
77 |
+
Sends a list of tweets to the Hugging Face Twitter Sentiment Analysis API and returns a list of sentiment scores for each tweet.
|
78 |
|
79 |
+
Args:
|
80 |
+
tweet_list (list): A list of strings, where each string represents a tweet.
|
81 |
+
return_argmax (bool): Whether to also return the predicted sentiment label with the highest confidence score for each tweet.
|
82 |
|
83 |
Returns:
|
84 |
+
A list of dictionaries, where each dictionary contains the sentiment scores for a single tweet. Each sentiment score dictionary
|
85 |
+
contains three key-value pairs: "positive", "neutral", and "negative". The value for each key is a float between 0 and 1 that
|
86 |
+
represents the confidence score for that sentiment label, where higher values indicate higher confidence in that sentiment. If
|
87 |
+
`return_argmax` is True, each dictionary will also contain an additional key "argmax" with the predicted sentiment label for
|
88 |
+
that tweet.
|
89 |
"""
|
90 |
|
91 |
+
if use_api:
|
92 |
+
import requests
|
|
|
|
|
93 |
|
94 |
+
# URL and authentication header for the Hugging Face Twitter Sentiment Analysis API
|
95 |
+
API_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
|
96 |
+
headers = {"Authorization": "Bearer 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"}
|
97 |
+
|
98 |
+
# Function to send a POST request with a JSON payload to the API and return the response as a JSON object
|
99 |
+
def query(payload):
|
100 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
101 |
+
return response.json()
|
102 |
|
103 |
+
# Send a list of tweets to the API and receive a list of sentiment scores for each tweet
|
104 |
+
output = query(
|
105 |
+
{
|
106 |
+
"inputs": tweet_list,
|
107 |
+
}
|
108 |
+
)
|
109 |
+
else:
|
110 |
|
111 |
+
from transformers import AutoModelForSequenceClassification
|
112 |
+
from transformers import TFAutoModelForSequenceClassification
|
113 |
+
from transformers import AutoTokenizer
|
114 |
+
from scipy.special import softmax
|
115 |
+
import os
|
116 |
+
|
117 |
+
task = "sentiment"
|
118 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
120 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
121 |
+
# model.save_pretrained(MODEL)
|
122 |
+
|
123 |
+
def get_sentimet(text):
|
124 |
+
labels = ["negative", "neutral", "positive"]
|
125 |
+
# text = "Good night 😊"
|
126 |
+
text = tweet_cleaner(text)
|
127 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
128 |
+
output = model(**encoded_input)
|
129 |
+
scores = output[0][0].detach().numpy()
|
130 |
+
scores = softmax(scores)
|
131 |
+
ranking = np.argsort(scores)[::-1]
|
132 |
+
results = {
|
133 |
+
labels[ranking[i]]: np.round(float(scores[ranking[i]]), 4)
|
134 |
+
for i in range(scores.shape[0])
|
135 |
+
}
|
136 |
+
|
137 |
+
max_key = max(results, key=results.get)
|
138 |
+
results["argmax"] = max_key
|
139 |
+
return results
|
140 |
+
|
141 |
+
return [get_sentimet(t) for t in tweet_list]
|
142 |
+
|
143 |
+
# Loop through the list of sentiment scores and replace the sentiment labels with more intuitive labels
|
144 |
+
result = []
|
145 |
+
for s in output:
|
146 |
+
sentiment_dict = {}
|
147 |
+
for d in s:
|
148 |
+
if isinstance(d, dict):
|
149 |
+
if d["label"] == "LABEL_2":
|
150 |
+
sentiment_dict["positive"] = d["score"]
|
151 |
+
elif d["label"] == "LABEL_1":
|
152 |
+
sentiment_dict["neutral"] = d["score"]
|
153 |
+
elif d["label"] == "LABEL_0":
|
154 |
+
sentiment_dict["negative"] = d["score"]
|
155 |
+
if return_argmax and len(sentiment_dict) > 0:
|
156 |
+
argmax_label = max(sentiment_dict, key=sentiment_dict.get)
|
157 |
+
sentiment_dict["argmax"] = argmax_label
|
158 |
+
result.append(sentiment_dict)
|
159 |
+
|
160 |
+
# Return a list of dictionaries, where each dictionary contains the sentiment scores for a single tweet
|
161 |
+
|
162 |
+
return result
|