File size: 6,882 Bytes
d1feb02
238735e
a0d1776
3b4e6ce
ae495a3
2dc9347
238735e
2c0ffed
238735e
2dc9347
238735e
 
 
 
ae495a3
238735e
 
 
 
 
 
 
 
 
 
 
 
 
 
c9efba3
238735e
 
 
 
365213e
2dc9347
365213e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dc9347
238735e
 
 
 
a0d1776
d1feb02
238735e
 
2dc9347
a0d1776
365213e
238735e
 
c9efba3
 
365213e
c9efba3
365213e
c9efba3
2dc9347
238735e
 
 
 
 
2dc9347
238735e
 
365213e
ae495a3
 
 
 
365213e
ae495a3
238735e
 
 
a0d1776
238735e
 
05783f8
 
 
 
a0d1776
 
 
 
238735e
1b82d4c
2dc9347
365213e
c304855
365213e
2dc9347
365213e
 
ae495a3
365213e
 
2dc9347
 
365213e
2dc9347
c9efba3
 
 
 
 
 
 
 
2dc9347
c9efba3
 
 
2dc9347
 
3b4e6ce
2dc9347
3b4e6ce
ae495a3
 
365213e
ae495a3
3a7ead9
 
2dc9347
 
 
 
 
3a7ead9
c9efba3
 
 
3a7ead9
 
c9efba3
3a7ead9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os.path
from utils.references import References
from utils.file_operations import hash_name, make_archive, copy_templates
from utils.tex_processing import create_copies
from section_generator import section_generation_bg, keywords_generation, figures_generation, section_generation
from references_generator import generate_top_k_references
import logging
import time


TOTAL_TOKENS = 0
TOTAL_PROMPTS_TOKENS = 0
TOTAL_COMPLETION_TOKENS = 0


def log_usage(usage, generating_target, print_out=True):
    global TOTAL_TOKENS
    global TOTAL_PROMPTS_TOKENS
    global TOTAL_COMPLETION_TOKENS

    prompts_tokens = usage['prompt_tokens']
    completion_tokens = usage['completion_tokens']
    total_tokens = usage['total_tokens']

    TOTAL_TOKENS += total_tokens
    TOTAL_PROMPTS_TOKENS += prompts_tokens
    TOTAL_COMPLETION_TOKENS += completion_tokens

    message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \
              f"{TOTAL_TOKENS} tokens have been used in total.\n\n"
    if print_out:
        print(message)
    logging.info(message)

def _generation_setup(title, description="", template="ICLR2022", tldr=False,
                      max_kw_refs=10, max_num_refs=50, bib_refs=None, max_tokens=2048):
    """
    This function handles the setup process for paper generation; it contains three folds
        1. Copy the template to the outputs folder. Create the log file `generation.log`
        2. Collect references based on the given `title` and `description`
        3. Generate the basic `paper` object (a dictionary)

    Parameters:
        title (str): The title of the paper.
        description (str, optional): A short description or abstract for the paper. Defaults to an empty string.
        template (str, optional): The template to be used for paper generation. Defaults to "ICLR2022".
        tldr (bool, optional): A flag indicating whether a TL;DR (Too Long; Didn't Read) summary should be generated for the collected papers. Defaults to False.
        max_kw_refs (int, optional): The maximum number of references that can be associated with each keyword. Defaults to 10.
        max_num_refs (int, optional): The maximum number of references that can be included in the paper. Defaults to 50.
        bib_refs (list, optional): A list of pre-existing references in BibTeX format. Defaults to None.

    Returns:
    tuple: A tuple containing the following elements:
        - paper (dict): A dictionary containing the generated paper information.
        - destination_folder (str): The path to the destination folder where the generation log is saved.
        - all_paper_ids (list): A list of all paper IDs collected for the references.
    """
    # print("Generation setup...")
    paper = {}
    paper_body = {}

    # Create a copy in the outputs folder.
    bibtex_path, destination_folder = copy_templates(template, title)
    logging.basicConfig(level=logging.INFO, filename=os.path.join(destination_folder, "generation.log") )

    # Generate keywords and references
    # print("Initialize the paper information ...")
    input_dict = {"title": title, "description": description}
    keywords, usage = keywords_generation(input_dict)
    log_usage(usage, "keywords")

    # generate keywords dictionary
    keywords = {keyword:max_kw_refs for keyword in keywords}
    print(f"keywords: {keywords}\n\n")

    ref = References(title, bib_refs)
    ref.collect_papers(keywords, tldr=tldr)
    all_paper_ids = ref.to_bibtex(bibtex_path)

    print(f"The paper information has been initialized. References are saved to {bibtex_path}.")

    paper["title"] = title
    paper["description"] = description
    paper["references"] = ref.to_prompts(max_tokens=max_tokens)
    paper["body"] = paper_body
    paper["bibtex"] = bibtex_path
    return paper, destination_folder, all_paper_ids #todo: use `all_paper_ids` to check if all citations are in this list



def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"):
    # todo: to match the current generation setup
    paper, destination_folder, _ = _generation_setup(title, description, template, model)

    for section in ["introduction", "related works", "backgrounds"]:
        try:
            usage = section_generation_bg(paper, section, destination_folder, model=model)
            log_usage(usage, section)
        except Exception as e:
            message = f"Failed to generate {section}. {type(e).__name__} was raised:  {e}"
            print(message)
            logging.info(message)
    print(f"The paper '{title}' has been generated. Saved to {destination_folder}.")

    input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"}
    filename = hash_name(input_dict) + ".zip"
    return make_archive(destination_folder, filename)



def generate_draft(title, description="", template="ICLR2022",
                   tldr=True, max_kw_refs=10, max_num_refs=30, sections=None, bib_refs=None, model="gpt-4"):
    # pre-processing `sections` parameter;
    print("================PRE-PROCESSING================")
    if sections is None:
        sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]

    # todo: add more parameters; select which section to generate; select maximum refs.
    paper, destination_folder, _ = _generation_setup(title, description, template, tldr, max_kw_refs, max_num_refs, bib_refs)

    # main components
    for section in sections:
        print(f"================Generate {section}================")
        max_attempts = 4
        attempts_count = 0
        while attempts_count < max_attempts:
            try:
                usage = section_generation(paper, section, destination_folder, model=model)
                log_usage(usage, section)
                break
            except Exception as e:
                message = f"Failed to generate {section}. {type(e).__name__} was raised:  {e}\n"
                print(message)
                logging.info(message)
                attempts_count += 1
                time.sleep(15)

    # post-processing
    print("================POST-PROCESSING================")
    create_copies(destination_folder)
    input_dict = {"title": title, "description": description, "generator": "generate_draft"}
    filename = hash_name(input_dict) + ".zip"
    print("\nMission completed.\n")
    return make_archive(destination_folder, filename)







if __name__ == "__main__":
    import openai
    openai.api_key = os.getenv("OPENAI_API_KEY")

    title = "Using interpretable boosting algorithms for modeling environmental and agricultural data"
    description = ""
    output = generate_draft(title, description, tldr=True, max_kw_refs=10)
    print(output)