Spaces:
Running
Running
# Generate references | |
# 1. select most correlated references from "references" dataset or Arxiv search engine. | |
# 2. Generate bibtex from the selected papers. --> to_bibtex() | |
# 3. Generate prompts from the selected papers: --> to_prompts() | |
# {"paper_id": "paper summary"} | |
import requests | |
import re | |
def _collect_papers_arxiv(keyword, counts=3): | |
# | |
# The following codes are used to generate the most related papers | |
# | |
# Build the arXiv API query URL with the given keyword and other parameters | |
def build_query_url(keyword, results_limit=3, sort_by="relevance", sort_order="descending"): | |
base_url = "http://export.arxiv.org/api/query?" | |
query = f"search_query=all:{keyword}&start=0&max_results={results_limit}" | |
query += f"&sortBy={sort_by}&sortOrder={sort_order}" | |
return base_url + query | |
# Fetch search results from the arXiv API using the constructed URL | |
def fetch_search_results(query_url): | |
response = requests.get(query_url) | |
return response.text | |
# Parse the XML content of the API response to extract paper information | |
def parse_results(content): | |
from xml.etree import ElementTree as ET | |
root = ET.fromstring(content) | |
namespace = "{http://www.w3.org/2005/Atom}" | |
entries = root.findall(f"{namespace}entry") | |
results = [] | |
for entry in entries: | |
title = entry.find(f"{namespace}title").text | |
link = entry.find(f"{namespace}id").text | |
summary = entry.find(f"{namespace}summary").text | |
# Extract the authors | |
authors = entry.findall(f"{namespace}author") | |
author_list = [] | |
for author in authors: | |
name = author.find(f"{namespace}name").text | |
author_list.append(name) | |
authors_str = " and ".join(author_list) | |
# Extract the year | |
published = entry.find(f"{namespace}published").text | |
year = published.split("-")[0] | |
founds = re.search(r'\d+\.\d+', link) | |
if founds is None: | |
# some links are not standard; such as "https://arxiv.org/abs/cs/0603127v1". | |
# will be solved in the future. | |
continue | |
else: | |
arxiv_id = founds.group(0) | |
journal = f"arXiv preprint arXiv:{arxiv_id}" | |
result = { | |
"paper_id": arxiv_id, | |
"title": title, | |
"link": link, | |
"abstract": summary, | |
"authors": authors_str, | |
"year": year, | |
"journal": journal | |
} | |
results.append(result) | |
return results | |
query_url = build_query_url(keyword, counts) | |
content = fetch_search_results(query_url) | |
results = parse_results(content) | |
return results | |
# Each `paper` is a dictionary containing (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal | |
class References: | |
def __init__(self, load_papers = ""): | |
if load_papers: | |
# todo: read a json file from the given path | |
# this could be used to support pre-defined references | |
pass | |
else: | |
self.papers = [] | |
def collect_papers(self, keywords_dict, method="arxiv"): | |
""" | |
keywords_dict: | |
{"machine learning": 5, "language model": 2}; | |
the first is the keyword, the second is how many references are needed. | |
""" | |
match method: | |
case "arxiv": | |
process =_collect_papers_arxiv | |
case _: | |
raise NotImplementedError("Other sources have not been not supported yet.") | |
for key, counts in keywords_dict.items(): | |
self.papers = self.papers + process(key, counts) | |
seen = set() | |
papers = [] | |
for paper in self.papers: | |
paper_id = paper["paper_id"] | |
if paper_id not in seen: | |
seen.add(paper_id) | |
papers.append(paper) | |
self.papers = papers | |
def to_bibtex(self, path_to_bibtex="ref.bib"): | |
""" | |
Turn the saved paper list into bibtex file "ref.bib". Return a list of all `paper_id`. | |
""" | |
papers = self.papers | |
# clear the bibtex file | |
with open(path_to_bibtex, "w", encoding="utf-8") as file: | |
file.write("") | |
bibtex_entries = [] | |
paper_ids = [] | |
for paper in papers: | |
bibtex_entry = f"""@article{{{paper["paper_id"]}, | |
title = {{{paper["title"]}}}, | |
author = {{{paper["authors"]}}}, | |
journal={{{paper["journal"]}}}, | |
year = {{{paper["year"]}}}, | |
url = {{{paper["link"]}}} | |
}}""" | |
bibtex_entries.append(bibtex_entry) | |
paper_ids.append(paper["paper_id"]) | |
# Save the generated BibTeX entries to a file | |
with open(path_to_bibtex, "a", encoding="utf-8") as file: | |
file.write(bibtex_entry) | |
file.write("\n\n") | |
return paper_ids | |
def to_prompts(self): | |
# `prompts`: | |
# {"paper1_bibtex_id": "paper_1_abstract", "paper2_bibtex_id": "paper2_abstract"} | |
# this will be used to instruct GPT model to cite the correct bibtex entry. | |
prompts = {} | |
for paper in self.papers: | |
prompts[paper["paper_id"]] = paper["abstract"] | |
return prompts | |
if __name__ == "__main__": | |
refs = References() | |
keywords_dict = { | |
"Deep Q-Networks": 5, | |
"Policy Gradient Methods": 4, | |
"Actor-Critic Algorithms": 4, | |
"Model-Based Reinforcement Learning": 3, | |
"Exploration-Exploitation Trade-off": 2 | |
} | |
refs.collect_papers(keywords_dict) | |
for p in refs.papers: | |
print(p["paper_id"]) |